Proposed Vegetation Treatments

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Proposed Treatment</th>
<th># of Stands</th>
<th># of Acres</th>
<th>General Description of Proposed Vegetation Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>jack pine</td>
<td>clearcut w/ reserves(^2)</td>
<td>15</td>
<td>263</td>
<td>These are mature jack pine stands, some affected by past jack pine budworm outbreaks. Post-harvest site preparation would include treatment with a roller chopper and chains to expose mineral soil for natural regeneration.</td>
</tr>
<tr>
<td>jack pine</td>
<td>red pine</td>
<td>4</td>
<td>96</td>
<td>After harvest these stands would be treated with a patch scarifier to create planting spots for red pine seedlings.</td>
</tr>
<tr>
<td>aspen</td>
<td>clearcut w/ reserves(^2)</td>
<td>9</td>
<td>174</td>
<td>Regenerate aspen by harvesting mature trees and preparing for aspen regeneration by cutting maple saplings.</td>
</tr>
<tr>
<td>spruce/fir</td>
<td>clearcut w/ reserves(^2)</td>
<td>3</td>
<td>14</td>
<td>Regenerate mixed stands, dominated by balsam fir, aspen, and black spruce. Post-harvest site preparation would include cutting all maple saplings to encourage black spruce, balsam fir, and aspen regeneration.</td>
</tr>
<tr>
<td>northern hardwoods</td>
<td>improvement cut</td>
<td>34</td>
<td>1114</td>
<td>Reduce existing tree density, removing poorly formed trees creating more growing space for remaining trees. Future treatments will also focus on regeneration, including the development of multiple age-classes.</td>
</tr>
<tr>
<td>white pine/hemlock</td>
<td>improvement cut</td>
<td>3</td>
<td>25</td>
<td>Reduce existing tree density, removing poorly formed and releasing crop trees. Future treatments will also focus on regeneration, including the development of multiple age-classes. One stand is dominated by balsam fir but white pine and hemlock would make up a majority of the overstory post-harvest.</td>
</tr>
<tr>
<td>northern hardwoods</td>
<td>individual tree selection</td>
<td>44</td>
<td>3497</td>
<td>Individual tree selection harvests would improve quality, increase diversity and encourage natural regeneration. In canopy caps created during the harvest, poorly formed saplings would be cut to free favored trees from competition. In some stands, white pine, hemlock, or northern red oak may be planted in canopy gaps to</td>
</tr>
</tbody>
</table>

\(^1\) All acreages are approximate.

\(^2\) “Clearcut w/reserves” means that, if present, some overstory white pine, red pine, and/or red oak would be retained in the stand, along with appropriate numbers of snags or potential snags, or underplanted with white pine after partial removal of the jack pine overstory in a shelterwood cut.
<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Proposed Treatment</th>
<th># of Stands</th>
<th># of Acres</th>
<th>General Description of Proposed Vegetation Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>red pine/white pine</td>
<td>individual tree selection</td>
<td>3</td>
<td>140</td>
<td>Individual tree selection harvests would improve quality, increase diversity and encourage natural regeneration. Canopy gaps would be created during the harvest to release existing red and white pine regeneration.</td>
</tr>
<tr>
<td>white pine/hemlock</td>
<td>individual tree selection</td>
<td>8</td>
<td>212</td>
<td>Individual tree selection harvests would improve quality, increase diversity and encourage natural regeneration. Canopy gaps surrounded by hemlock may be mechanically treated to scarify soil to create favorable conditions for hemlock regeneration.</td>
</tr>
<tr>
<td>red pine</td>
<td>thinning</td>
<td>54</td>
<td>2025</td>
<td>Thinning would improve quality of stand, increase diversity, and reduced "rowed" appearance for plantation stands.</td>
</tr>
<tr>
<td>red pine/white pine</td>
<td>shelterwood</td>
<td>6</td>
<td>121</td>
<td>Tree canopy would be opened up, increasing sunlight reaching the forest floor, in conjunction with mechanical soil scarification, creating favorable conditions for regeneration.</td>
</tr>
<tr>
<td>paper birch</td>
<td>shelterwood</td>
<td>4</td>
<td>87</td>
<td>Tree canopy would be opened up, increasing sunlight reaching the forest floor, in conjunction with mechanical soil scarification, creating favorable conditions for regeneration.</td>
</tr>
<tr>
<td>aspen/spruce/fir</td>
<td>shelterwood</td>
<td>2</td>
<td>49</td>
<td>Tree canopy would be opened up, releasing the existing white pine in the understory. Long range goal would be to increase the white pine portion of these stands.</td>
</tr>
<tr>
<td>jack pine</td>
<td>shelterwood & underplant</td>
<td>2</td>
<td>68</td>
<td>White pine would be planted under the remaining jack pine overstory with the long range goal of moving the condition towards stands dominated by late seral conifers.</td>
</tr>
<tr>
<td>aspen</td>
<td>shelterwood & underplant</td>
<td>4</td>
<td>85</td>
<td>White pine would be planted under the remaining aspen overstory with the long range goal of moving the condition towards stands dominated by late seral conifers.</td>
</tr>
</tbody>
</table>

3 Most jack pine stands proposed for treatment on ELT 20 would be regenerated to jack pine after harvest. Some jack pine stands on the more productive ELT 30 would be planted to red pine after harvest or underplanted with white pine after partial removal of the jack pine overstory in a shelterwood cut.

4 Ten red pine stands appear to be naturally regenerated stands with no record of planting and no rows or furrows visible.
<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Proposed Treatment</th>
<th># of Stands</th>
<th># of Acres</th>
<th>General Description of Proposed Vegetation Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Post-Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>white pine</td>
<td>shelterwood & underplant</td>
<td>3</td>
<td>105</td>
<td>A prescribed burn would take place after the harvest to reduce the non-native scotch pine and Norway spruce seedlings as well as prepare the site for natural regeneration of white pine and red pine. In areas with poor natural regeneration, white pine would be planted under the remaining overstory of white pine and red pine.</td>
</tr>
<tr>
<td>northern hardwoods</td>
<td>shelterwood & underplant</td>
<td>15</td>
<td>303</td>
<td>White pine would be planted under the remaining overstory with the long range goal of having a mixed overstory of hardwoods and white pine as well as increasing stand productivity.</td>
</tr>
<tr>
<td>northern hardwoods</td>
<td>woodlots</td>
<td>17</td>
<td>394</td>
<td>Overstocked stands would be thinned by removing the smaller poor quality trees and releasing crop trees.</td>
</tr>
<tr>
<td>oak, red pine, northern hardwoods</td>
<td>planting</td>
<td>5</td>
<td>43</td>
<td>No harvest. Oak and red pine would be planted in two stands with poor stocking. Three northern hardwood stands would be underplanted to increase species diversity.</td>
</tr>
<tr>
<td>red pine<sup>5</sup>, white pine, northern hardwoods</td>
<td>timber stand improvement (TSI)</td>
<td>74</td>
<td>3054</td>
<td>Non-commercial treatments. Release red pine and white pine that has been planted in the past 20 years from competition. Prune select white pine to reduce blister rust infections.</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>309</td>
<td>11,869</td>
<td></td>
</tr>
</tbody>
</table>

⁵ If window of appropriate burn conditions does not occur, the slash in the stands would be mechanically treated.