CLASS III CULTURAL RESOURCE INVENTORY FOR THE PROPOSED VILLAGE AT WOLF CREEK LAND EXCHANGE, MINERAL COUNTY, COLORADO

Prepared for:

Western Land Group, Inc
1760 High St., Denver, CO 80218

Rio Grande National Forest
1803 West Hwy 160 Monte Vista, CO 81144

Prepared by:

Ethan Morton, Principal Investigator

Smith Environmental and Engineering
12071 Tejon Street, Suite 470
Westminster, CO 80234

SMITH Project #407
File Code: 1950

State of Colorado Archaeological Permit No. 2009-66
Issued under the authority of the Colorado Historical, Prehistorical, and Archaeological Resources Act, CRS 1973 24-80-401 et seq., and under the procedures of the State Administrative Procedures Act, CRS 1973 24-4-101 et seq.

August, 2009
ABSTRACT

Western Land Group, Inc. (WLG) is in the initial stages of planning a land exchange between a private landowner and the Rio Grande National Forest in Mineral County Colorado near Wolf Creek Pass. The proposed exchange would entail a Federal undertaking that must comply with Section 106 of the National Historic Preservation Act. To support anticipated consultations required by the regulations for Protection of Historic Properties (Title 36, Code of Federal Regulations, Part 800), which implement Section 106, WLG retained Smith Environmental and Engineering (SMITH) to conduct a cultural resources study of the proposed effected private and public lands.

The project area consisted of an irregular shaped polygon consisting of 262 acres of private land and 247 acres of public land managed by the Rio Grande National Forest. The study included a literature review of prior cultural studies and previously recorded archaeological and historic sites within the project area and an intensive Class III pedestrian survey.

The literature review identified several previous cultural studies in the project area, two prehistoric archaeological sites, three isolated occurrences, the historic alignment of US-160, and a few potential undocumented historic sites. The intensive pedestrian survey discovered one isolated occurrence. The survey was unable to relocate the previously documented ephemeral sites and isolates, most likely due to above average vegetative cover within the project area.

The newly discovered isolated occurrence is not eligible for listing on the National Register of Historic Properties (National Register). The two previously recorded archaeological sites have been officially determined ineligible for the National Register and evaluated as not warranting protection. US-160 retains no historic qualities within the project area and the segment within the project area has been officially determined ineligible for the National Register. No undocumented historic sites were identified within the project area.

A determination of “no historic properties affected,” as defined by regulations for Protection of Historic Properties, Title 36, Code of Federal Regulations (CFR), Part 800.4(d)(1), is recommended. In the unlikely event that archaeological resources are subsequently discovered on Federal Land within the project area, they should be protected in place and reported immediately to the Rio Grande Forest Service so they can be evaluated and treated as a post-review discovery in compliance with 36 CFR Part 800.13.
TABLE OF CONTENTS

Abstract ..

Management Information Form ...

Introduction ...

Environmental Setting ..
 Topographic Features ..
 Climate ..
 Geology ..
 Soils ..
 Hydrology ..
 Flora ..
 Fauna ..
 Environmental Constraints ...
 Paleoenvironment ..

Cultural History Context ..
 Prehistoric Context ...
 Paleoindian ..
 Archaic ..
 Late Prehistoric/Ceramic ...
 Protohistoric ..
 Historic Context ..
 Expeditions and Explorers ..
 Farming and Ranching ..
 Mining ..
 Transportation ..
 Logging ..
 Recreation ..

Previous Research ..
 Prior Studies ..
 Government Land Office Plat ..

Field Methods and Evaluation Criteria ..
 Definitions ..
 Survey Methods ..
 Evaluation Criteria ..

Results ..

Conclusion and Management Recommendations ..

References Cited ..

Appendix A. Site and IF Locations ..
LIST OF FIGURES

1 General Project Location
2 Project Area
3 Prior Studies in the Project Vicinity
4 General Land Office Plat

LIST OF TABLES

1 Prior Studies in the Project Vicinity
2 Previous Recorded Cultural Resources in the Project Vicinity

LIST OF PHOTOGRAPHS

1 Alberta Park/Wetlands Area
2 Dead Trees and Associated Deadfall
3 Typical Slope in Project Area
Colorado Historical Society - Office of Archaeology and Historic Preservation
Colorado Cultural Resource Survey
Cultural Resource Survey Management Information Form

I. Project Size

<table>
<thead>
<tr>
<th></th>
<th>Total Federal Acres</th>
<th>Total State Acres</th>
<th>Total Private Acres</th>
<th>Total Other Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Project</td>
<td>228.8</td>
<td>0</td>
<td>262.1</td>
<td>0</td>
</tr>
<tr>
<td>Surveyed</td>
<td>228.8</td>
<td>0</td>
<td>262.1</td>
<td>0</td>
</tr>
</tbody>
</table>

II. Project Location

<table>
<thead>
<tr>
<th>County</th>
<th>Mineral</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS Quad Map</td>
<td>Wolf Creek Pass, CO</td>
</tr>
<tr>
<td>Principal Meridian</td>
<td>New Mexico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Township</th>
<th>Range</th>
<th>Section</th>
<th>SW</th>
<th>SE</th>
<th>NE</th>
<th>NW</th>
<th>1/4</th>
<th>1/4</th>
<th>1/4</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Township</td>
<td>37N</td>
<td>Range</td>
<td>2E</td>
<td>Section</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Township</td>
<td>Range</td>
<td>Section</td>
<td>4</td>
<td>SW</td>
<td>SE</td>
<td>1/4</td>
<td>SE</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Township</td>
<td>Range</td>
<td>Section</td>
<td>5</td>
<td>SE</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Township</td>
<td>Range</td>
<td>Section</td>
<td>8</td>
<td>NE</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Township</td>
<td>Range</td>
<td>Section</td>
<td>9</td>
<td>NE</td>
<td>1/4</td>
<td>NW</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Township</td>
<td>Range</td>
<td>Section</td>
<td>10</td>
<td>NW</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

III. Sites

<table>
<thead>
<tr>
<th>Smithsonian Number</th>
<th>Resource Type</th>
<th>Eligibility</th>
<th>Management Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prehistoric</td>
<td>Historic</td>
<td>Paleontological</td>
</tr>
<tr>
<td>5ML.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5ML.107</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5ML.110</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5ML.112</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

IV. Isolated Finds

<table>
<thead>
<tr>
<th>Smithsonian Number</th>
<th>Resource Type</th>
<th>Prehistoric</th>
<th>Historic</th>
<th>Paleontological</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ML.111</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5ML.113</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5ML.114</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5ML.572</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
INTRODUCTION

WLG is in the initial stages of planning a land exchange between a private landowner and the Rio Grande National Forest in Mineral County Colorado near Wolf Creek Pass (Figure 1). The proposed exchange would entail a Federal undertaking that must comply with Section 106 of the National Historic Preservation Act. To support anticipated consultations required by the regulations for Protection of Historic Properties (Title 36, Code of Federal Regulations, Part 800), which implement Section 106, Western Land Group retained SMITH to conduct a cultural resources study of the proposed effected private and public lands.

The purposes of this study were to accurately locate and identify cultural resources visible on the ground surface, to evaluate these surface finds for inclusion on the National Register of Historic Properties (NRHP), to determine the potential effect of the project on all NRHP eligible resources; and to make recommendations if needed for the mitigation of the adverse effect on those cultural resources.

The project area consisted of an irregular shaped polygon of 509 acres of mountainous land near the summit of Wolf Creek Pass. Two hundred and sixty two acres of this land are private and the remained 247 acres are public lands managed by the Rio Grande National Forest (Figure 2).

The study included a literature review of prior cultural studies and previously recorded archaeological and historic sites within the project area and an intensive Class III pedestrian survey. The literature review was conducted at the Colorado Office of Archaeology and Historic Preservation (OAHP) and records were also reviewed at the Rio Grande National Forest. Government Land Office Plats were also examined for any undocumented historical resources.

The Class III intensive pedestrian survey was conducted by SMITH under State of Colorado of Colorado Archaeological Permit No. 2009-66 on July 8-10, 2009. Ethan Morton acted as principal investigator and was assisted by David Sabata. Mr. Sabata was also involved in various report production tasks and site from data entry. Rio Grande National Forest archaeologist Angie Krall provided administrative direction and overview of the project.
Figure 1. Project Location Map
Figure 2. Project Area
ENVIRONMENTAL SETTING

Topographic Features

The project area is located on the eastern slope of the Continental Divide in the San Juan Mountains of southern Colorado (refer to figure 2). The San Juan Mountains are part of the Southern Rocky Mountain physiographic province (Hunt 1967). The topography of the project area is generally mountainous land with steep slopes, open wetland meadows, small creeks and streams, and forested knolls. Elevations in the project area range from around 10,600 feet to 10,200 feet.

The steepest slopes are found on the western and southern portions of the project area. These often exceed 30 degrees and include cliffs and overhangs. These slopes have numerous small ravines and defiles created by small springs and runoff erosion. The central portion of the project area is dominated by large interconnected wetland meadows referred to as Alberta Park. These areas are generally flat with non-defined drainages to the north and south which lead into Pass Creek. There is standing water throughout the wetland areas. Dispersed throughout these wetland meadows are slightly hillocks and benches. The eastern portion of the project area rises into a larger well defined hill which is relatively flat on top. The eastern slope of this hill is extremely steep and drops into a small valley with a wetland bottom leading to a small pond near the northern boundary of the project area. The extreme eastern portion of the project area has a steep ridge running from the northwest to the southeast.

Climate

Extreme seasonal variation characterizes the climate of the San Juan Mountains. Average annual precipitation recorded at Wolf Creek Pass is around 108 inches a year. Most of the precipitation is a result of snowfall between the months of August and March. Wolf Creek Ski Area averages 465 inches of snow a year equating to approximately four feet of rainfall (CSCU 2009). The average temperatures recorded at Wolf Creek Pass vary between 4 degrees Fahrenheit (F) in January to 66 degrees F in July. Record lows have been documented as low as -45 degrees F and as high as 95 degrees F.

Geology

The San Juan Mountains are a dissected volcanic dome composed of middle Tertiary-Period (~35 million years ago) volcanic rocks that are generally flat to gently dipping. The mountains have been most recently shaped by a series of glacial events during the Pleistocene Epoch (2.6 million years ago to 11,000 years ago)(Chen and Associates 1987). Alberta Park in the center of the project area is underlain by the Treasure Mountain Tuff of the Oligocene era that is generally covered by surficial deposits (glacial till). The Treasure Mountain Tuff is a heterogeneous rock, generally consisting of air-fall and ash-flow tuff with some reworked sandstones and conglomerates. Glacial deposits overlie the bedrock (tuff). Glaciation has generally resulted in hummocky topography that is still present at locations throughout the project area. The glacial till varies in thickness from a thin veneer to more than 35 feet. These glacial deposits consist of
unstratified gravel, cobbles, and boulders in a silty and clayey sand matrix. Colluvial deposits, largely derived from the till, are present generally as a thin veneer along most of the steeper valley walls. The colluvium generally has a composition similar to the till from which it was derived (Chen and Associates 1987).

Soils

There are several different soil types within the project area. The wetland areas around Alberta Park consist of a very deep, poorly and very poorly drained soils with mixtures of organic peat materials and raw minerals referred to as Cryochemists-Cryaquolls Soils (Chen and Associates 1987). Leighcan-Enlich Soils are found above the wetland areas and are well drained and stable. These soils support large stands of Subalpine Furr and Englemann Spruce in the project area. The steep slopes and cliffs in the project area have very little to no soil with large outcrops of eroding rock and active erosion.

Hydrology

The hydrology of the area is best described as a headwater of the south fork of the Rio Grande River Watershed. Hydrologic systems within and near the project area include lakes (natural and manmade), rivers, streams, overland drainage flow, and wetlands. The hydrology in this region is primarily driven by snow and snow melt which is stored in snowpack until spring runoffs. However, thunderstorms do occur during the summer monsoon season and there are several small undocumented springs and seeps that have been observed recharging Alberta Park during the summer (USDA 2006). The wetland area of Alberta Park is flanked to the north and south by two unnamed tributaries of Pass Creek which flows into the South Fork of the Rio Grande.

Flora

Flora within the project area are generally representative of those found within the Sub-Alpine life zone as it approached the Alpine Transition Zone (Dixon 1971, Mutel and Emerick 1984). The project area is dominated by naturally heterogeneous mature spruce-fir forests perforated by herbaceous wetlands, riparian corridors, and upland meadows. Common tree species include Engleman Spruce, Douglas-fir, lodgepole pine, aspen, and subalpine fir. The forests has a robust undergrowth which includes willow, vaccinium, heartleaf arnica, yarrow, strawberry, Jacobs ladder, cinquefoil, globeflower, march marigold, and subalpine butter cup. Flora in the wetland parks consist of the patchy, native meadow matrix common in this area including wheatgrass, timothy, tufted hairgrass, bluejoint reedgrass, and willow. Dryer meadows are dominated by sedges, cornhusk lily, and tufted hairgrass.

Fauna

Fauna in the project area are typical of those found throughout Colorado’s mountainous regions (Keen 1971, Mutel and Emerick 1984). Many of the species only use the area temporarily during the late spring and summer migrating during the winter. Common mammals associated with the spruce-fir forests include southern red-backed voles, least chipmunks, long-tailed voles, northern pocket gophers, red squirrels, snowshoe hares, red fox, coyotes, mule deer, and elk (USDA
2006). Common birds associated with these conifer forests include dark-eyed juncos, American robins, ruby-crowned kinglets, yellow-rumped warblers, pine siskins, hermit thrushes, Cassin’s finches, chipping sparrows, northern flickers, hairy woodpeckers, brown creepers, and mountain chickadees. Wildlife commonly associated with meadows and riparian areas include pocket gophers, chipmunks, golden-mantled ground squirrels, yellow-bellied marmots, juncos, robins, mountain bluebirds, Wilson’s warbler, Lincoln’s sparrows, coyotes, deer, and elk. Aquatic habitats are poorly developed at these upper elevations. Habitats cannot support beavers and the complex ecological communities their transformed habitats support. However, Alberta Park Reservoir (just outside the project area) supports a Rio Grande cutthroat trout and brook trout fishery, and headwater streams support these species. Reptiles and amphibians are poorly represented at these high elevations, though western terrestrial garter snakes are present.

Land Use Patterns

The project area consists of both private and public lands. The public lands administered by the Rio Grande Nation Forest are generally open to the public primarily for recreational use. US-160 runs along the northern boundary of the project area and Forest Service Road 391 runs along the western and southern boundaries of the project area. Forest Service Road 391 is used to access Alberta Park Reservoir just to the southeast of the project area and is open after spring runoff generally through the fall hunting seasons (early November). This road crossed both the public and private portions of the project area. It facilitates recreational use focused at the lake, and dispersed use to the south, primarily during the hunting seasons. In the winter, FSR 391 is buried under several feet of snow and has limited use. A limited number of Nordic trails are groomed throughout the private property for use by non-motorized recreationalists. Wolf Creek Ski area is located just to the west of the project area. A ski lift is operated and maintained just west of FS-Road 391 adjacent to the project area.

Environmental Constraints

Most of the Fauna found with the project area have adapted to continuous low to intense levels of seasonal to year-round human and vehicular activities due to the closeness of US-160 and Wolf Creek Ski Area (USDA 2006). Unlike most Colorado ski areas, the Ski Area is a single season, day-use only resort. As such, the development is largely compatible with wildlife use, including those forest-interior and edge species that have adjusted to the fragmented spruce-fir forests composing its lower terrain. The forests were further opened and thinned between the 1950s to 1970s era timber harvest and by Ski Area development (USDA 2006). There are unofficial two track and unimproved roads throughout the project area on the private property which were likely used for logging activities. For the most part these roads have been retired and are slowly being reclaimed by vegetation. There is currently no active timber harvesting being conducted on the private or public lands.

The project area has been subjected to logging activities in the past which may have impacted cultural remains although that is highly unlikely (Spero 1979, 2004). Potential past impacts include the creation of minimally maintained roads and work areas with associated drainage ditches. Clear cutting activities may have increased erosion in some areas. There are no known historic forest fires within the project area.
There are several environmental constraints that affected fieldwork in the project area. The entire Alberta Park area is extremely boggy with standing water found throughout the wetlands areas. The amount of water in these meadow areas may have been caused by an unusually wet summer. Stands of timber where found to be extremely dense with lots of down trees and limbs with a thick understory of vegetation. Slopes in the project area were extremely steep and often exceeded 30 degrees. These slopes were extremely slippery and dangerous due to thick mats of pine needles in some areas.

Paleoenvironment

Due to the high elevation of the project area and its position near the transition zone between Sub-Alpine and Alpine Life Zones past changes in the environment likely had dramatic effects in the project area. An account of fluctuations in past climatic conditions aids in providing meaning to the archaeological record. Prehistoric human adaptations developed in response to the changing ecosystems of which there were a part (Jodry 1999a).

Generally, only gross climatic trends have been established for western North America prior to 2,000 years Before Present (BP) (Antevs 1955, Madsen 1982, Mehringer 1967, Wendland and Bryson 1974, Peterson 1981). Reconstructions of past climate of the San Juan Mountains near the project area are largely derived from Sediment Cores from Black Mountain Lake (Jodry 1999a, Reasoner and Jodry 1998). Analysis of the Paleoenvironmental record suggest that during the Younger Dryas interval (11,000 to 10,000 BP) climate conditions in the mountainous regions of Colorado were probably cooler and wetter than the preceding 500 to 800 years, and during the succeeding early Holocene (10,000 BP to present)(Reasoner and Jodry 1998). Alpine Glaciers advanced and alpine timberlines declined in elevation. During the subsequent early Holocene (10,000 to 9,000 BP) the climate warmed substantially, the glaciers retreated, and the alpine timberline was significantly higher than its current position. This change in the environment is reflected in the archaeological record by the increased remains of Paleoindian cultural remains at higher elevations (Jodry 1998). The climate during the middle Holocene (8,000 to 4,000 BP) is not well understood in the southeastern San Juan Mountains. Across the continental divide in the southern Colorado River Basin the climate of the middle Holocene has been described as generally warmer and wetter than present resulting in a higher alpine treeline then the current elevation. Winters were cold and dry with increases in both summer and annual temperatures with a shift to monsoon-dominated summers and greater effective moisture than at present (Betancourt 1984, Betancourt and Biggard 1985). It has also been argued the regional climate was actually dryer than present during the middle Holocene (Hall 1985). Regional variation certainly existed and preliminary data from the Rio Grande Basin of Colorado appears to support generally warmer and drier climate during the middle Holocene (Martorano 1999a) Around 4,000 BP the climate became similar to the modern conditions with a tree line near its current location.
CULTURE HISTORY CONTEXT

PREHISTORIC CONTEXT

Local and regional archaeological studies suggest nearly continuous human occupation of Colorado for the past 12,000 years. The prehistory of these aboriginal inhabitants has been discussed locally in terms of the watershed of the Rio Grande Basin (Martorano et al 1999). The cultural history of the aboriginal Rio Grande Basin in southern Colorado can be generally separated into five broad periods: Paleoindian (12,000-5,500 B.C.), Archaic (5,500 B.C.-A.D 800), Late Prehistoric/Ceramic (800-1600 A.D.), and Protohistoric (1600 – 1881 A.D.).

Paleoindian

It is widely accepted that the earliest occupation of the Rio Grande Basin occurred during the Paleoindian period. The Paleoindian period has been characterized as a specialized adaptation to late Pleistocene/early Holocene environments involving hunting of now-extinct large game species such as mammoth and bison. Paleoindian remains are characterized by large tools usually found in association with hunting activities particularly large dart and spear points. This characterization is being continually refined as some have argued that too much emphasis has been placed on the big game hunting component of Paleoindian economies obscuring foraging strategies utilized by these groups (Kelly 1995).

The Paleoindian period has been traditionally broken down into three smaller sequential traditions: Clovis; Folsom, and a conglomeration of Late Paleoindian Co-Traditions in the upper Rio Grande Basin (Jodry 1999b). The Clovis tradition is characterized by the use of large, fluted lanceolate points indicating a reliance on large game hunting particularity mammoths (Reed and Metcalf 1999). Clovis sites are rare throughout the New World, and this period is poorly understood in the mountain region of Colorado. Smaller, finely pressure-flaked and fluted lanceolate dart points and a reliance on hunting now-extinct forms of bison characterize the following Folsom period. This adaptation is thought to accompany the environmental change during the transition from the Pleistocene to the Holocene. The succeeding Late Paleoindian Co-Traditions consist of various groups (Agate Basin, Hell Gap, Alberta, Cody, and Federick/Jimmy Allen) that postdate the Folsom period. The material culture of these groups consists of lanceolate and stemmed dart points. The late Paleoindian period represents a continuation of trends started during the Folsom Period with the addition of exploitation of a greater diversity of resources and increasingly sophisticated hunting techniques (Reed and Metcalf 1999). Regional differentiation is thought to be represented by a florescence of diversity in lithic technology, which produced several varieties of standardized, large, unfluted lanceolate projectile points. The temporal and geographical distinctions of Late Paleoindian grounds based on these points have become less clear over time with the increase in data and an overall understanding that a simple unilinear progression is unrealistically simplistic (Jodry 1999b). Late Paleoindian sites are the most commonly found during the Paleoindian period in the mountain regions of southern Colorado (Stiger 2001). It is evident that several different hunter-gather groups were sharing the landscape during terminal Plesitoocene and early Holocene times.
Archaic

Environmental change is thought to be the key factor in determining the cultural change between the Paleoindian period and the subsequent Archaic period. The Archaic period (5500 B.C. to A.D. 500) follows the extinction of big game animals, and is generally characterized by Holocene fauna and episodes of environmental changes that altered subsistence patterns, resulting in the replacement of large fauna by smaller species and a warmer and dryer climate (Guthrie et al. 1984; Reed and Metcalf 1999). Due to these changes indigenous peoples adopted a wider diet, expanding their resources to a larger variety of small game and plant foods. These hunter-gatherers improved their technology and now used more complex tools. Technological adaptations of the Archaic included a diversification of the toolkit, a general decrease in the size of points of stemmed and notched varieties, use of plant fibers for basket and cord production, and the emergence of grinding stones (manos and metates) for more efficient food processing (Guthrie et al. 1984).

The end of the Archaic period is followed by the Formative period in other regions of North America. Horticulture replaced hunting and gathering as the primary subsistence economy marking the beginning of the Formative period. This distinction between periods is problematic in the Upper Rio Grande Basin region as a limited growing season precludes the utilization of horticulture. Other traits commonly used to differentiate between the Archaic and Formative periods are the addition of ceramics, shift from spear-thrower (atalatl) to the bow and arrow, and use of more complex architecture (Euler and Stiger 1981; Harrell et al 1997; Hoefer 1987; Metcalf and Black 1991; Stiger 1981, 1986; Stiger and Larson 1992).

Certainly expeditions from nearby regions that could support Formative style communities hunted and foraged in the Upper Rio Grande Basin alongside local populations of hunters and gathers that continued a more Archaic style lifestyle (Guthrie et al. 1984). While the distinctions between the Archaic and Formative periods continue to be refined and better understood an Archaic period style subsistence economy of hunting and gathering continued in Upper Rio Grand Basin up to the Protohistoric period.

Late Prehistoric/Ceramic

Like the proceeding transition the distinction between the Archaic and the Late Prehistoric/Ceramic period is not well represented in the Rio Grande Basin (Martorano 1999b). Generally, a modified Archaic period hunting and gathering lifestyle was continued throughout the Late Prehistoric/Ceramic period. These modifications including increasingly smaller side and corner notched project points and increased trade items obtained from nearby horticultural groups. Horticulture may have been practiced locally in highly specialized opportunistic localities (Martorano 1999b). Sites are widely dispersed throughout the region with concentrations observed along the upper tributaries of the Rio Grande (Martorano 1999b). Sites include lithic scatters, open camps, stone circles, and rock shelters. It is during this period that Numic expansion may have began around 1100 AD with the arrival of the Ute people (Madsen and Rhode 1994, Reed 1994). The end of the Late Prehistoric/Ceramic period is clearly defined by the arrival of Euroamerican influences and direct contact with the Spanish around A.D. 1600 (Martorano 1999b).
Protohistoric

The Protohistoric period for the Rio Grande Basin clearly begins with the appearance of European trade goods and ethnographic accounts of aboriginal populations by early explorers, missionaries, trappers, miners, and settlers. In general, the aboriginal populations of the Upper Rio Grand Basin included several identifiable ethnographic groups during the Protohistoric period. The area was dominated by the Utes but also included Comanche, Apache, Navajo, Arapaho, Cheyenne, and north Pueblo groups (Taos, Tewa, and Tesuque)(Meyers 1950, Martorano 1999c). These peoples continued to practice a hunting and gathering lifestyle that underwent dramatic changes with the introduction of European trade goods. Archaeologically, the period is characterized by European trade goods including guns, metal projectile points, and other metal items such as knives and cooking pots, flaked glass artifacts; glass beads; horse trappings; small side-notched, corner-notched, and unnotched points used with the bow and arrow, wickiups, culturally peeled trees, ceramics, and rock art depicting horses and riders (Martorano 1999c). The Protohistoric period is generally thought to have ended with the forced expulsion of the Utes to reservations in 1881 A.D. (Guthrie et al 1984; Reed and Metcalf 1999; Martorano 1999c).

HISTORIC CONTEXT

The historic context of the region begins around 1600 A.D. and is summarized to around 1960 AD. The summary is loosely focused on the eastern slope of the San Juan Mountains and the South Fork of the Rio Grande near the project area. Numerous frameworks have been used to discuss the historical context of this region of Colorado (Buckles and Buckles 1984, Carter and Mehls 1984, Church et al 2007). The context here loosely follows that of the Southern Frontier framework developed by Carter and Mehls (1984) but other sources were used to augment the background information (Hermsen Consultants 1998, Monte Vista Historical Society 2009, Rio Grande National Forest 2009, San Luis Valley Museum Association 2009, Weaver 2001). The historical context consists of a few broad themes appropriate to the region: expeditions and explores, farming and ranching, mining, logging, transportation, and recreation.

The first Euroamericans in the region were the Spanish who claimed the region from the late 1600s to the Mexican Revolution of 1821 A.D. Mexico’s claim to the region was short lived ending in 1848 A.D with the ceding of the region to the United States of American as terms of the Treaty of Guadalupe-Hildalgo which ended the Mexican-American War. The region officially became the Colorado Territory of the United States in 1861 and was officially admitted as a state in 1876 AD. Mineral County was established in 1893.

Expeditions and Explores

The first documented Euroamerican explores in the region were the Spanish who made several expeditions to the region in the late 1600s (Espinosa 1936) and 1700s A.D. Some notable expeditions include: Don Diego de Vargas who in 1694 A.D. led an expedition into the San Luis Valley and was attached by Utes; In 1761 A.D an expedition was led by Spanish Governor Manuel de Portilno into the San Luis Valley; and in 1779 A.D. a punitive expedition was
launched against the Comanche by Governor Juan Bautista de Anza which included more than 600 soldiers and 200 Ute and Apache allies that traveled through the San Luis valley to present day Salida. Shortly after the Louisiana Purchase of 1803 A.D, the United States government commissioned an expedition led by Lt. Zebulon M. Pike to explore the disputed boundary area between the Arkansas and Red Rivers. Pike eventually made it to then Spanish controlled territory in the San Luis Valley in 1807 A.D. At a stockade camp near the modern day town of Conejos, he was arrested by a Spanish patrol and taken to Santa Fe where he was later released.

Spanish dominance in the region ended in 1821 A.D. with the Mexican Revolution. The Spanish had previously closed the borders off their territory to outside traders but the new Mexican government reversed this policy and opened the borders. This coincided with a boom in the fur trade particular beaver pelts. Between the 1820s and 1830s A.D. the San Luis Valley was a major transportation route for trappers selling their pelts in Taos. Notable trappers in the region included Jedediah Smith and Kit Carson. The fur trade declined in the 1830s A.D. due to a decline in beaver populations and changes in fashion. The Mexican governments hold over the region ended relatively quickly with the end of the Mexican-War in 1848 A.D which ceded the region to the United States of America.

The first documented American led expedition arrived that year when John C. Fremont led an ill-fated attempt to search for a practical route across the San Juan Mountains. The expedition was started in the winter and ended in disaster in deep snows with many men dying. Some of the members of this expedition followed the Rio Grand River back to the San Luis Valley suffering many hardships. In 1852 Fort Massachussets was established along the southern slopes of Blanca Peak near La Veta Pass to protect settlement in the San Luis Valley. This fort was short-lived due to a poor choice in location and was later established as Fort Garland near the modern town that bears its name. Caption John W. Gunnison led a scientific expedition into the region the following year tasked with mapping a practical railroad route through the mountains. The expedition mapped portions of the San Luis Valley and Cochetopa Pass. Gunnison was killed during the expedition by hostile natives. The Wheeler and Hayden Expedition in 1874 A.D. explored many areas within southern Colorado. The expedition was tasked to locate routes, trails and potential army post sites in southwestern Colorado and the Colorado Mountains. The Wheeler and Hayden Expedition was followed up by the Hayden Expedition from 1873 to 1876 A.D which explored, mapped, and cataloged flora and fauna throughout Colorado.

Farming and Ranching

Spanish settlement in the region had initially been mostly driving off by the aboriginal Utes. Beginning in the 1830s AD the new Mexico government began issuing land grants along its northern frontier which included south central Colorado. After the end of the Mexican-American war the Treaty of Guadalupe-Hidalgo confirmed existing Mexican land titles of the local residents. By the 1850s A.D. there were several established communities in the San Luis Valley.

These earlier farmers pioneered innovative irrigation techniques while practicing subsistence based farming until the 1860s A.D. Farming during this period was supplemented with the raising of cattle, goats, and sheep. This livestock was often driven to the surrounding mountains and hills during the summer months to take advantage of the open range pastures. The discovery
of gold in 1859 A.D and the ensuing Pikes Peak Gold Rush across Colorado led to an increased demand for food. This initiated a shift in agriculture in the region from subsistence based farming to commercial farming.

During the 1870s and 1890s A.D. farming continued to shift towards larger operations with increased stock of cattle and sheep coinciding with the arrival of the railroad (Weaver 2001). More land was put to use and additional water supplies were needed which lead to extensive reclamation projects and new cash crops such as potato, onion, carrot, and other crops throughout the San Luis Valley. Large scale horse operations also began to appear during this time and grew in significance until the early 20th century. With the increased use of the valley for agricultural projects and the increase in livestock, utilization of the foothills and mountains for grazing intensified creating conflicts between stockholders. This tension was largely abated in 1908 A.D with the creation of the Rio Grande National Forest which regulated the rangeland use of the mountainous areas. The early decades of the 20th Century saw continued agricultural growth with the development of railroad spurs and technology (Weaver 2001). This particularity increased vegetable production which continues to the modern day as the major economic base of the region.

Mining

The first reports of precious minerals in Colorado’s mountains came in the first decades of the 18th century when Mexican traders reported finding gold nuggets in the area. In 1859 A.D a major discovery was found at the confluence of Cherry Creek and the South Platte River now in the middle of Denver. This discovery sparked the Pikes Peak Gold Rush to Colorado the continued throughout various regions of the state until the late 1800s A.D.

Gold and Silver were discovered near Summitville in the southeastern San Juan Mountains in 1870 A.D. and a large rich lode of silver was discovered near the headwaters of the Rio Grande River near Creede in 1889 A.D. These discoveries led to a large influx of people into the region creating new towns and settlements. These towns served as supply points and gateways to the mining camps in the San Juan Mountains (Hermsen Consultants 1998, RGNF 2009). Creede grew to a size of over 10,000 inhabitants in just a few years (RGNF 2009). The Silver Panic of 1893 A.D ended the boom and several mining times disappeared due to the corresponding rapid exodus of people. Some towns remained but as shadows of their former selves. By 1880 A.D, mining in this region had become mostly commercialized.

Transportation

This region of Colorado has long been associated with travel corridors. Most of the travel corridors in the region are based on the alignments of aboriginal trade routes and hunting trails (RGCM 2009). These routes and trails were first recognized by the Spanish, Mexican, and American explores some of which were gradually transformed into formal routes of transportation.

One of the oldest established routes in region was the Santa Fe Trail or Old Spanish Trail. The trail had several branches and routes one of which ran up the San Luis Valley from Santa Fe and
crossed west over Cochetopa Pass meeting up with the southern branch near Green River Utah. The trail saw its most use between the 1830s and 1840s A.D. (SLVMA 2009). The gold and silver rush of the late 1800s A.D led to the spread of prospectors throughout the region. These prospectors created more trails, again based on old aboriginal trails. Entrepreneurs build toll roads extending from the San Luis Valley west into the San Juan Mountains (Carter and Mehls 1984).

In 1891, the Denver and Rio Grande Railroad completed a branch line into Creede to tap the booming mining industry in the San Juan Mountains (RGNF 2009). Its trains never ran empty in either direction. Arriving trains overflowed with passengers standing in the aisles, on top of cars, and sometimes on each other. Returning trains carried thousands of tons of rich silver ore back down from Creede. After the collapse of the silver market many of the railroad spurs and tracks were abandoned. The San Juan extension, between Alamosa and Durango Colorado over Cumbres Pass was operational until the mid 1900s A.D serving the lumber, passenger, livestock and freight until the advent of the automobile (RGNF 2009)

In the early 1900s A.D the major transportation route over the San Juan Mountains between Fort Garland in the San Luis Valley and Fort Lewis in Pagosa Springs Colorado consisted of a dirt road over Elwood Pass a few miles to the southwest of Wolf Creek Pass (Hermens Consultants 1998). In response to a flash flood in 1914 A.D. that washed out a portion of this road a survey was undertaken by J. E. Maloney to locate alternative routes. One of these potential routes included the current location of US-160 over Wolf Creek Pass. This route was ultimately chosen for the construction of a new road designated Highway 450. Construction was completed in 1916 and the dirt road was up to 12 feet wide in some places but as narrow as six feet in others. The road was commonly referred to locally as the Spanish Trail. Highway 450 was renamed to US 160 and was rebuilt in 1929 A.D. often on different sides of the valley leading up to the pass and again widened in 1936 A.D. up to 24 feet. By 1950 A.D. the entire route over Wolf Creek Pass had been fully paved.

Logging

Substantial logging activities in the area began in the 1860s A.D. as a demand for forest products increased with the increase in population. Farming and ranching activities such as house building, barns, corrals, fences and fuel-wood cutting all required timber (RGNF 2009). In the late 1800s A.D. logging increased dramatically with the mining boom and the arrival of the railroad. Mines and their associated towns required lumber for building and fuel and the railroad required ties for the ever expanding spurs and tracks (Weaver 2001). Saw mills sprung up everywhere and the south fork of the Rio Grande was used to float timber down to rapidly growing South Fork which had previously been just a stage stop (Weaver 2001).

By the early 1900s A.D. a growing concern by the public about watershed protection and maintaining the forest for recreational purposes led to an act of Congress in 1908 for the creation of Forest Reserves (RGNF 2009). Various Groups held different opinions about the creation of the reserves but in 1908 the Rio Grande National Forest was officially created by President Theodore Roosevelt. The creation of the forest led to formal timber activity which became a
major economic force in the region. Logging activities remained at a high level until the mid 1940s A.D. Logging continues to this day in the region but at a much smaller scale.

Recreation

Recreational activities in the region began as early as the late 1870s A.D when the quality of local game brought hunters from around the country (Weaver 2001). Recreational activities increased substantially with the creation of the National Forest in 1908 A.D.

In 1934 the Civilian Conservation Corps were active in the region. The Corps had a camp at the confluence of Beaver Creek and the south fork of the Rio Grande just west of the town of South Fork (Hermsen Consultants 1998). The Corps were instrumental in improving facilities in the region for both recreation and institutional infrastructure. They were maintaining the forest by removing junk, building roads, recreational areas, telephone lines, and bridges. By the late 1930s A.D the road over Wolf Creek Pass had become a tourist attraction. People drove from all over the country to summit the dirt road that went over the pass (Hermsen Consultants 1998).

In 1938 Kelly Boyce installed a rope tow on the north side of the continental divide near the summit of Wolf Creek Pass for a ski area (Colorado Ski History 2009). The area slowly developed with the aide of the Civilian Conservation Corps and the Colorado Department of Highways. By 1949 A.D the area had developed substantially and was know as South Fork Ski Area. During the mid 1950s the ski area was developed further and set up as a corporation. It began to take on its modern form by the 1960s.

PREVIOUS RESEARCH

A file search was conducted at the Colorado Office of Archaeology and Prehistoric Preservation (OAHP) and records were reviewed at the Divide Ranger District Rio Grande National Forest. Government Land Office Plats were also reviewed for undocumented historical sites. The records search identified seven cultural studies within the vicinity of the project area (Table 1; Figure 3). Five of these studies encompassed portions of the project area. The entire project area was found to have been subjected to at least one prior study.

Prior Studies

The earliest study was undertaken in 1975 for the Upper Pass Creek Timber Sale and Salvage Project (Beardsley et al 1975). Three archaeological sites were identified and evaluated including one site (5ML.01) within the project area (Table 2). 5ML.01 is a small open low density lithic scatter with no culturally diagnostic material. Artifacts were collected from this site during this investigation. The site has been officially determined ineligible for the National Register.

The most comprehensive study in the region was conducted in 1978 by the Colorado Highway Department as part of a realignment of US-160 between the town South Fork and the crest of Wolf Creek Pass-16 miles (Shafer 1978). The study was generally confined to an 800 foot buffer
Figure 3: Prior Studies within the Project Area
TABLE 1
PRIOR STUDIES IN THE PROJECT VICINITY

<table>
<thead>
<tr>
<th>Project Name/ Number</th>
<th>Scope</th>
<th>Within Project Area</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Upper Pass Creek Timber Sale and Salvage/ML.FS.R49</td>
<td>~2,160 acres</td>
<td>Yes</td>
<td>3 sites recorded in search area: 5ML01-5ML03</td>
<td>Beardsley, Armagast, and Spero 1975</td>
</tr>
<tr>
<td>2 Wolf Creek Pass East/MC.CH.R148</td>
<td>~6.4 square miles</td>
<td>Yes</td>
<td>1 site recorded in search area: 5ML37; 3 previously recorded sites 5ML01-5ML03; 1 isolated find-chert biface (fJ-23)</td>
<td>Shafer 1978</td>
</tr>
<tr>
<td>3 Thunder Timber Sale/ML.FS.NR19</td>
<td>~3,000 acres</td>
<td>No</td>
<td>none in search area</td>
<td>Spero 1979</td>
</tr>
<tr>
<td>4 Leavell Properties Inc./ML.FS.R48</td>
<td>480 acres</td>
<td>Yes</td>
<td>1 site recorded in search area: 5ML110; 1 previously recorded site: 5ML01; 3 isolated finds: 5ML111-5ML113</td>
<td>Spero 1984</td>
</tr>
<tr>
<td>6 Avalanche Control System and Warming Huts/ML.FS.NR47</td>
<td>5 acres</td>
<td>No</td>
<td>None</td>
<td>Spero 2001</td>
</tr>
<tr>
<td>7 Leavell-Mcombs Wolf Creek Village Road Access/unknown</td>
<td>13 acres</td>
<td>Yes</td>
<td>None</td>
<td>Spero 2004</td>
</tr>
</tbody>
</table>

TABLE 2
PREVIOUSLY RECORDED CULTURAL RESOURCES IN THE PROJECT VICINITY

<table>
<thead>
<tr>
<th>Site Name/ Number</th>
<th>Description</th>
<th>Within Project Area</th>
<th>Register Status (criterion)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5ML01</td>
<td>Lithic Artifact Scatter -collected</td>
<td>Yes</td>
<td>Officially determined ineligible</td>
<td>Beardsley, Armagast, and Spero 1975; Spero 1984</td>
</tr>
<tr>
<td>2 5ML02</td>
<td>Lithic Artifact Scatter -collected</td>
<td>No</td>
<td>Recommended further study</td>
<td>Beardsley, Armagast, and Spero 1975</td>
</tr>
<tr>
<td>3 5ML03</td>
<td>Lithic Artifact Scatter -collected</td>
<td>No</td>
<td>Recommended further study</td>
<td>Beardsley, Armagast, and Spero 1975</td>
</tr>
<tr>
<td>4 5ML37</td>
<td>Lithic Artifact Scatter</td>
<td>No</td>
<td>Recommended ineligible</td>
<td>Shafer and Gooding 1978</td>
</tr>
<tr>
<td>6 5ML110</td>
<td>Chipped Stone Scatter</td>
<td>Yes</td>
<td>Officially determined ineligible</td>
<td>Spero 1984</td>
</tr>
<tr>
<td>7 5ML111</td>
<td>Isolated Find-chipped stone scatter</td>
<td>Yes</td>
<td>Officially determined ineligible</td>
<td>Spero 1984</td>
</tr>
<tr>
<td>8 5ML112</td>
<td>Isolated Find-tool and chipped stone</td>
<td>Yes</td>
<td>Officially determined ineligible</td>
<td>Spero 1984</td>
</tr>
<tr>
<td>9 5ML113</td>
<td>Isolated Find-obsidian projectile point fragment</td>
<td>Yes</td>
<td>Officially determined ineligible</td>
<td>Spero 1984</td>
</tr>
</tbody>
</table>
zone along the course of US-160 but was expanded a mile south of the highway a mile between Tucker Ponds and the entrance to the Wolf Creek Pass Ski Resort to accommodate proposed alternative routes. This study identified 24 archaeological sites and 27 isolated finds. Twenty of the archaeological sites were tested for subsurface cultural materials. One of these sites (5ML.37) was located just to the east of the project area and one of the isolates (IF-23) was identified within the project area. The site consisted of a small open scatter of artifacts and chipped stone debris. It was partially collected and tested for subsurface cultural materials. After analysis it was recommended as ineligible for the National Register. The isolate was a chert biface tool fragment. The investigators were unable to relocate and revaluate site 5ML.01.

A large study was conducted just to the north of the project area in 1979 for a timber sale (Spero 1979). No cultural material were identified within the project area.

In 1984 a study was undertaken for a potential land exchange between the National Forest and a private party (Spero 1985). One site (5ML.110) and three isolated finds (5ML.111-5ML.113) were identified within the project boundary. 5ML110 is a small open lithic scatter with no culturally diagnostic material. It was officially determined as ineligible for the National Register. The isolated occurrences include a scatter of four stone flakes (5ML111), a basalt scraper and two basalt flakes (5ML112), and an obsidian projectile point midsection (5ML113). The study mentions an overall disturbance in the project is from logging activities conducted in the early 1960s. The investigators excluded some areas due to prior investigations, steep slopes, thick undergrowth, wetlands, and disturbed areas.

In 1998 a historic resources survey report was conducted as part of an Environmental Assessment on proposed transportation improvements of US 160 from the east side of Wolf Creek Pass to the community of South Fork (Hermsen Consultants 1998). The study identified four historic sites and two segments of linear historic sites. Only one segment of the linear sites is within the project area (5ML107.1). 5ML107.1 is a segment US-160/Wolf Creek Pass Highway/Navajo Trail. It had been officially determined as ineligible for the National Register.

A small study was undertaken to the south of the project area in 2001 for an avalanche control system and proposed warming huts for Wolf Creek Ski Area (Spero 2001). No cultural materials were identified.

The most recent study was undertaken in 2004 as a portion of an Environmental Impact Statement (EIS)(Spero 2004). The EIS involved alternative access routes for a permit year-round easement through the Rio Grande National Forest to a private land in-holding. In addition to a cultural resource study of the proposed effected areas consultation was undertaken as part of the EIS with Native American groups concerning traditional cultural properties. No cultural resources were identified as part of this study and the Native American groups expressed no concerns about that proposed undertaking unless human remains were discovered.

Government Land Office Plat

The General Land Office first surveyed Township 37 North, Range 2 East, in 1882 A.D. Potential undocumented cultural features depicted on the plat were a timber line and a trail (Figure 4). The locations of these features are difficult to reconcile with a current topographic
map suggesting that the plotted locations are somewhat arbitrary. The sections do not match their current alignment and the Continental Divide is drawn incorrectly compared to the current USGS quadrangle map.

The timber line is depicted as running through portions of Sections 3, 4, 5 and 8. The trail runs through the northern portions of Sections 3, 4, and 5 possibly near the modern alignment of US-160. Hermsen Consultants (1998) mentioned that the remnant of trail extend from a point northeast of the Junction of US 160 and Pass Creek to a point near the Columbine Rest are part of the trail used by the Utes. This may be the same trail depicted on the plat.

FIELD METHODS AND EVALUATION CRITERIA

The entire project area will be subject to an intensive 100 percent Class III pedestrian survey. Survey will involve a field crew of two people walking transects spaced 20 meters apart. Navigation, will be conducted using GPS units, compasses, topographic maps and aerial photos. Previously recorded sites and isolated finds within the project area will be revisited and reevaluated. Survey transects at known site locations will be spaced less than five meters apart.

If a new site is identified crew members will intensively search the area, radiating out from the initial find until the limits of the visible cultural materials have been determined. After the boundaries have been defined, the appropriate Colorado Cultural Resource Inventory Record forms will be completed, photographs will be taken of the site as well as individual features and select tools, and a site sketch map will be drawn. The site location and boundaries will be plotted with a handheld Trimble GeoXT GPS unit with sub-meter accuracy. Isolated finds will be recorded on standard Isolated Find forms and their waypoints plotted with a GPS unit with 3-meter accuracy (Delorme PN-20). After the fieldwork is completed any forms were retyped in the laboratory, and all of the sketch maps will be digitally drafted.

All prehistoric and historic sites and isolates will be evaluated in compliance with National Historic Preservation Act of 1966, as amended in 2000 (16 USC 470), following the regulations from the Advisory Council on Historic Preservation. This report also complies with Colorado’s Register of Historic Places Statute (CRS 24-80.1) of 1975, following the requirements for archaeological survey reports as specified in the Colorado Cultural Resource Survey Manual (OAHP 2007).

The Rio Grande National forest site definition will be used in designated archaeological sites (Angie Krall, personal communication 2009). The Rio Grande National forest defines archaeological sites as cultural manifestations in the form of prehistoric and historic artifacts, features, structures, and unusual ground disturbances. A site for the purposes of this report is defined as the presence of five or more formal artifacts within 200 square meters that appear to represent patterned behavior. An isolated artifact is defined as the presence of 5 or less artifacts
within 200 square meters. Concentrations of limited numbers of flakes in a small area are also considered isolated finds. Prospect pits or aspen graffiti with no associated features, structures, or artifacts are examples of features that might be recorded as isolated finds. Features or artifacts that cannot be identified as 50 years of age or older, either through historic maps and records, or diagnostic artifacts or features, will only be mentioned in reports and not formally recorded. Some examples are roads, trails, and irrigation ditches not shown on historic maps or in files as historic and having no diagnostic historic features, structures, or artifacts in association.

All cultural resources over 50 years of age located in the project area will be recorded on Colorado Cultural Resource Inventory Forms (OAHP 2007). Cultural Resource Reevaluation Forms will be prepared for the previously recorded cultural resources located in the survey area if the resource significantly differs from its original condition.

Any cultural resources found will be evaluated using criteria for inclusion in the National Register of Historic Places (National Register). To be eligible for the National Register properties ordinarily must be at least 50 years old (unless they are exceptionally significant), and must be important in American history, architecture, archaeology, engineering, or culture. They

Figure 4: Government Land Office Plat
must possess integrity of location, design, setting, materials, workmanship, feeling, or association. In addition, properties must meet at least one of the following four criteria:

Criterion A: are associated with events that have made a significant contribution to the broad patterns of our history

Criterion B: are associated with the lives of persons significant in our past

Criterion C: embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or possess high artistic values, or that represent a significant distinguishable entity whose components may lack individual distinction

Criterion D: have yielded or may likely yield information important in prehistory or history

RESULTS

The Class III pedestrian cultural resources survey was conducted on July 8-10, 2009. Ethan Morton acted as principal investigator and was assisted by David Sabata. During the survey it was determined that there were regions within the project area that could not be effectively surveyed due to zero ground visibility, safety concerns, and other impediments. These included wetland areas, dense stands of pines with heavy undergrowth and deadfall, steep slopes (exceeding 30 degrees), and disturbed areas (roads, logging debris, and ski area junk piles).

The excluded wetland areas were primarily found within Alberta Park (photograph 1). These wetlands were found to have standing water in them and thick tall grasses which offered zero percent ground visibility. There were areas of higher ground within the wetlands area that provided some level of ground visibility. These small hillocks, benches, and berms were intensively surveyed in transects spaced less then 5 meters apart. Dense stands of timber were observed throughout the project area with large amounts of associated deadfall, mats of thick pine needles and thick undergrowth. These areas were surveyed as intensively as possible but large standing dead trees were avoided for safety concerns (Photograph 2). Slopes exceeding 30 degrees were not inventoried due to safety concerns and active erosion (Photograph 3). The heavily disturbed areas included the US-160 corridor through the project area, FS-Road 391, and several unimproved roads throughout the project area. The unimproved roads and FS-391 were waked throughout the project area to look for associated undocumented historic resources.

Only one isolated find was identified during the field survey. The isolate consisted of two secondary chert reduction flakes. One was tan and the other mottled tan and white. The isolate was identified in an open area on top of the gentle hill in the middle of the project area. pieces of chipped stone on top of the gentle hill in the middle of the project area (Appendix A). One flake was a secondary tanish chert and the other was a mottled white and tan. The isolate was assigned Smithsonian Number 5ML.572. Despite intensive efforts no evidence of the previously recorded sites (5ML.01 and 5ML.110) and isolates (5ML111-113) were identified. The inability to relocate 5ML.01 is not surprising since the site had been totally collected and tested (Beardsley et al 1975, Shafer 1978, Spero 1984).
There was evidence of logging activity throughout the project area. This included snag piles, unimproved roads, and tree stumps. This logging was determined to have taken place during the early 1960s (Dusty Hicks, personal communication 2009). No trash piles or other related material were observed. It was assumed that most of the materials associated with the logging had been removed.

Ski area impacts appear to be limited to the storage of some junk in a small area along an unimproved road off of FS-391. None of this material is historic. Unimproved roads in the project area have created some artificial drainages but the amount of erosion created by roads appears to be minimal.

CONCLUSION AND RECOMMENDATIONS

Only one isolated find was recorded during the field work. By definition isolated finds are not eligible for listing on the National Register (OAHP 2007). No evidence of the previous documented sites or isolates were identified. Both of the previously recorded sites have been officially determined ineligible for the National Register and evaluated as not warranting protection. The entire project area has been surveyed at least twice and the potential for further research is minimal. The climate is harsh and the terrain is rugged which suggests the potential for undiscovered prehistoric or historic sites is low.
Prehistorically the region was certainly used for seasonal hunting, campsites, and travel but no sites were identified within the project area. Historically the region was used for logging, grazing, transportation, recreation, and the development of Wolf Creek Ski Area. No associated with historic activities were discovered within the project area. US-160 retains none of its historic qualities and the segment that runs through the project area has been officially determined ineligible for the National Register Any potential historic qualities of Wolf Creek Ski Area are outside the project boundaries.

A determination of “no historic properties affected,” as defined by regulations for Protection of Historic Properties, Title 36, Code of Federal Regulations, Part 800.4(d)(1), is recommended and no mitigation measures are proposed. No additional consideration of cultural resources is warranted unless cultural remains or human remains are unexpectedly encountered on Federal Lands within the project area. Any discover would be evaluated and treated as a post-review discovery in compliance with Title 36, Code of Federal Regulations, Part 800.13.
REFERENCES

Antevs, E.

Beardsley, John, Marrilyn Armagast, and Vincent Spero
1975 *Cultural Resource Inventory Report Upper Pass Creek Timber Sale and Salvage 1975.*
United States Forest Service, Rio Grande National Forest, Monte Vista, Colorado

Betancourt, J.L.

Betancourt, J. L. and N. Biggard
1985 *Preliminary Assessment of Late Quarternary Vegetation and Climate of Southeastern Utah Based on the Analysis of Packrat Middens.* BMI/ONWI, Battelle Memorial Institute, Columbus, OH.

Black, K.D.

Buckles, W. G. and N.B Buckles

Carter, J. C. and S. F. Mehls

Chen and Associates
1987 *Chen and Associates, Engineering Geology Investigation, The Village at Wolf Creek, Mineral County, Colorado.*

Church, M. C., S.G. Baker, B.J. Clark, R.F Carrillo, J. C. Horn, C.D. Spath, D.R. Guilfoyle, and E.S. Cassells
2007 *Colorado History: A Context for Historical Archaeology.* Edited by E. S. Cassells. Colorado Council of Professional Archaeologists. Denver, CO

Colorado Ski County USA
Colorado Ski History

Dixon, H. N.

Dean, J.S., R.C. Euler, G.J. Gumerman, F. Plog, R.H. Hevly and T.N.V. Karlstrom

Euler, R. T. and M. Stiger

Espinosa, J. M.

Guthrie, M.R., P. Gadd, R. Johnson, and J.J. Lischka

Hall S. A.

Harrell, L. L. Ted Hoefer III, and S. T. McKern

Hermsen Consultants

Hoefer, T., III

Hunt, C. B
Jodry, Margaret A.

Keen, V. F.

Kelly, R. L.

Madsen, D.B.

Madsen, D. B. and D. Rhode (editors)

Martorano, M.A.

Martorano, M. A., T. Hoefer III, M. A. Jodry, V. Spero, and M. L. Taylor

Mehringer, P. J.

Metcalf, M. D. and K. D. Black

Meyers, H. C. Jr.

Monte Vista Historical Society

Mutel, C. F. and J. C. Emerick

Office of Archaeology and Historic Preservation (OAHP)

Peterson, K. P.

Reasoner, M. A. and M. A. Jodry

Reed, A. D.

Reed, A. D. and M. D. Metcalf
Rio Grande National Forest

San Luis Valley Museum Association (SLVMA)

Shafer, Judy Ann

Spero, Vincent

Stiger, M.

Stiger, M. and M. Larson
United States Department of Agriculture (USDA), United States Forest Service
2006 *Application for Transportation and Utility Systems and Facilities for the Village at Wolf Creek. Final Environmental Impact Statement.* Del Norte, CO

Weaver, R.L.
2001 *South Fork: A Journey Into the Past.* Monte Vista, CO.

Wendland, W.M. and R.A. Bryson
COLORADO CULTURAL RESOURCE SURVEY
Isolated Find Record

I. IDENTIFICATION AND LOCATION
1. Resource No.: 5ML.572
2. Temp. Resource Number: IF1
3. County: Mineral
4. Legal Location: PM NM Township 37N Range 2E
 Section 9 NW ¼ NE ¼ NW ¼ NE ¼
 If section is irregular, explain alignment method:
5. UTMs Zone 13S ; 343215 mE 4148785 mN Datum: NAD83
6. USGS Quad Name: Wolf Creek Date: 1984

II. ARCHAEOLOGICAL DATA
7. Artifacts: 2 chert flakes

8. IF 15m OR Single Artifact:
 Dimensions: __________ __________
9. Inferred Function(s): Lithic reduction, tool production or use
10. Cultural Affiliation/Time Period: Unknown prehistoric
11. Comments:

III. ENVIRONMENTAL DATA
12. Elevation: Feet 10485 Meters 3195
13. Soil: Light brown residual gravel from granitic parent material, which protrudes in places.
14. Topography: On a small bald knoll which drops off quickly to the north, but which meets a larger hill to the south.
15. Slope: Site 0-5 Surrounding 0-30
16. Nearest Water: Name/Nature Pass Creek/Perennial
 Elevation 10200 Distance 550m Direction N
17. Vegetation: Lodgepole Pine, sparse grasses

IV. REFERENCE DATA
18. Collection: Yes No X Describe: _________________________________
19. Repository: NA
20. Landowner: Western Land Group, Inc.
21. Report Title: Class III Cultural Resource Inventory for the Proposed Village at Wolf Creek Land Exchange, Mineral County, Colorado
22. Recorder(s): Ethan Morton, David Sabata
23. Recorder Affiliation: Smith Environmental and Engineering
24. Date(s): 7/9/2009

Colorado Historical Society - Office of Archaeology & Historic Preservation
1300 Broadway, Denver, CO 80203, 303-866-3395