Midas Gold, Inc.
Golden Meadows Exploration Project
Stibnite, Idaho

Revised
Plan of Operations for
3-Year Exploration
Drilling Program

Prepared by:
HDR Engineering, Inc.
412 E. Parkcenter Blvd., Suite 100
Boise, ID 83706

March 2016
Robert Barnes
President and COO Midas Gold Idaho, Inc.
405 S. 8th Street
Boise, Idaho 83702

Dear Bob:

On January 14, 2016, I signed the Decision Notice approving the Golden Meadows Exploration Project (POO-2014-049059). The signed operating plan acceptance and required reclamation bond have been received and I have approved the operating plan. An original of the plan acceptance and approval document along with a copy of the date stamped bond form (FS-6500-7) are attached. We are in the process of releasing the existing $18,000.00 bond that is being replaced by the surety. The Plan of Operation will expire three years from the date implementation begins. Please let Jim Egnew know when you begin implementation.

Sincerely,

ANTHONY B. BOTTLELO
DISTRICT RANGER

Enclosures
Table of Contents

1.0 INTRODUCTION...1
 1.1 General Information..1
 1.2 Project Owner/Operator..1
 1.3 Land Status..2
 1.4 Document Control...2

2.0 PROJECT LOCATION...3

3.0 ACCESS AND ROAD SEGMENT DESCRIPTIONS..7
 3.1 North Stibnite (Attachment A, Sheet 3)...7

4.0 EXPLORATION DRILLING SITE DESCRIPTIONS ..13
 4.1 Proposed North Stibnite Drilling (Attachment A, Sheet 1).......................................13
 4.2 Proposed Huckleberry Drilling (Attachment A, Sheet 2)..13
 4.3 Proposed East Stibnite Drilling (Attachment A, Sheet 3)..13
 4.4 Proposed Broken Hill Drilling (Attachment A, Sheet 4)...13
 4.5 Proposed IPAB Drilling (Attachment A, Sheet 5)...14
 4.6 Proposed IPA Drilling (Attachment A, Sheet 6)...14
 4.7 Proposed South Midnight Drilling (Attachment A, Sheet 7)....................................14
 4.8 Proposed Telsa Drilling (Attachment A, Sheet 8)...14
 4.9 Proposed UM-2 Drilling (Attachment A, Sheet 9)..14
 4.10 Proposed Ridgetop Drilling (Attachment A, Sheet 10)..15
 4.11 Proposed IPC Drilling (Attachment A, Sheet 11)..15
 4.12 Proposed Plasma Drilling (Attachment A, Sheet 12)..15
 4.13 Proposed Upper Midnight Drilling (Attachment A, Sheet 13)...............................15
 4.14 Proposed West Garnet Drilling (Attachment A, Sheet 14)......................................15
 4.15 Proposed Blue Lightning Drilling (Attachment A, Sheet 15).................................16
 4.16 Proposed Fulgarite Drilling (Attachment A, Sheet 16)..16
 4.17 Proposed Cubscout Drilling (Attachment A, Sheet 17)..16
 4.18 Proposed Garnet Drilling (Attachment A, Sheet 18)...16
 4.19 Proposed West Rabbit Drilling (Attachment A, Sheet 19)......................................16
 4.20 Proposed East Rabbit Drilling (Attachment A, Sheet 20)......................................17
 4.21 Proposed Saddle Drilling (Attachment A, Sheet 21)...17
 4.22 Proposed Box Drilling (Attachment A, Sheet 22)...17
 4.23 Proposed Doris K Drilling (Attachment A, Sheet 23)..17
 4.24 Proposed Northeast Extension Drilling (Attachment A, Sheet 24)......................18

5.0 EQUIPMENT STAGING..19

6.0 STAFF LODGING, POTABLE WATER, AND WASTEWATER TREATMENT.............21
 6.1 Temporary Staff Housing ...21
 6.2 Potable Water Supply for Man Camp..21
 6.3 Wastewater Treatment for Man Camp..21
 6.4 Wastewater Treatment for Drill Sites..21

7.0 BORROW SOURCE...25

8.0 SUMMARY OF PRIVATE LAND AND FOREST SERVICE LAND DISTURBANCE AREA..27
9.0 OPERATIONS ...29
10.0 STANDARD OPERATING PROCEDURES..31
 10.1 Air Quality/Noise ...31
 10.2 Water Quality ...32
 10.2.1 Additional Water Quality-related Environmental Commitments ...34
 10.3 Hazardous Materials and Previous Mining Operations ...36
 10.3.1 Additional Hazardous Materials and Previous Mining Operations-related Environmental Commitments ...37
 10.4 Fuel Transport Management ...37
 10.4.1 Additional Fuel Transport Management-related Environmental Commitments39
 10.5 Soil ..42
 10.5.1 Additional Soil-related Environmental Commitments ..43
 10.6 Wetland and Riparian Resources ...44
 10.7 Wildlife ..44
 10.8 Aquatics ...46
 10.8.1 Additional Aquatics-related Environmental Commitments ..48
 10.9 Fire Safety & Emergency Response ..49
 10.10 Vegetation ..49
 10.11 Transportation and Public Safety ...50
 10.11.1 Additional Transportation and Public Safety-related Environmental Commitments51
 10.12 Recreation ..51
 10.13 Visual Resources ...51
 10.14 Cultural Resources ...52
 10.15 Monitoring of Proposed Action BMPs and Reclamation ...52
11.0 LONG TERM WATER QUALITY MONITORING PLAN ..53
12.0 RECLAMATION PLAN ..56
 12.1 Drill Pad Reclamation ..56
 12.2 Temporary Road Reclamation ...56
 12.3 Reclamation in Areas with Bentflowered Milkvetch ..57
 12.4 General Reclamation Practices and On-Going Activities ...57
13.0 RECLAMATION PERFORMANCE BOND ..59
14.0 OPERATING PLAN ACCEPTANCE ..61

List of Figures
Figure 1. Location of Proposed Project .. 5
Figure 2. Overview of Proposed Action Activities ..11
Figure 3. Proposed Temporary Camp Facilities and Borrow Area ..23
Figure 4. Exploration Monitoring ..55
List of Tables
Table 1. Summary of Proposed Drilling Activities ... 8
Table 2. Summary of Disturbance Area Associated with the Plan of Operations Activities 27
Table 3 Water Withdrawal Diversion Rates ... 32
Table 4. Transportation Mitigation Measure ... 40
Table 5. Project Water Rights ... 46
Table 6 Exploration Surface Water Monitoring Sites... 54

ATTACHMENTS
Attachment A – Proposed Drilling Site Maps (topographical, aerial, slope maps for each site)

- Sheet 1: North Stibnite
- Sheet 2: Huckleberry
- Sheet 3: East Stibnite
- Sheet 4: Broken Hill
- Sheet 5: IPAB
- Sheet 6: IPA
- Sheet 7: South Midnight
- Sheet 8: Telsa
- Sheet 9 UM-2
- Sheet 10: Ridgetop
- Sheet 11: IPC
- Sheet 12: Plasma
- Sheet 13: Upper Midnight
- Sheet 14: West Garnet
- Sheet 15: Blue Lightning
- Sheet 16: Fulgarite
- Sheet 17: Cubscout
- Sheet 18: Garnet
- Sheet 19: West Rabbit
- Sheet 20: East Rabbit
- Sheet 21: Saddle
- Sheet 22: Box
- Sheet 23: Doris K
- Sheet 24: Northeast Extension

Attachment B – Selected Photographs of Proposed Drilling Sites
Attachment C – Typical Drilling Operation Photographs
Attachment D – Photographs of Reclamation Activities
Attachment E – Example of BMP Inspection Sheet
Attachment F – Claims Map and Claims List
Attachment G - Bond Calculation Worksheet and Reclamation Performance Bond
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>ATV</td>
<td>all-terrain vehicle</td>
</tr>
<tr>
<td>BA</td>
<td>biological assessment</td>
</tr>
<tr>
<td>BMPs</td>
<td>best management practices</td>
</tr>
<tr>
<td>BO</td>
<td>biological opinion</td>
</tr>
<tr>
<td>BOI</td>
<td>Boise National Forest</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EA</td>
<td>environmental assessment</td>
</tr>
<tr>
<td>EFSFSR</td>
<td>East Fork of the South Fork of Salmon River</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Medical Service</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FH</td>
<td>Forest Highway</td>
</tr>
<tr>
<td>FS</td>
<td>Forest Service road</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>HAZWOPER</td>
<td>hazardous waste operation and emergency response training</td>
</tr>
<tr>
<td>IDAPA</td>
<td>Idaho Administrative Procedures Act</td>
</tr>
<tr>
<td>IDEQ</td>
<td>Idaho Department of Environmental Quality</td>
</tr>
<tr>
<td>IDL</td>
<td>Idaho Department of Lands</td>
</tr>
<tr>
<td>IDWR</td>
<td>Idaho Department of Water Resources</td>
</tr>
<tr>
<td>MBR</td>
<td>membrane biological reactor</td>
</tr>
<tr>
<td>MGI</td>
<td>Midas Gold, Inc.</td>
</tr>
<tr>
<td>SDS</td>
<td>safety data sheets</td>
</tr>
<tr>
<td>MSGP</td>
<td>Multi Sector General Permit</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NFS</td>
<td>National Forest System</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOI</td>
<td>notice of intent</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPT</td>
<td>Nez Perce Tribe</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PAF</td>
<td>Payette National Forest</td>
</tr>
<tr>
<td>POD</td>
<td>point of diversion</td>
</tr>
<tr>
<td>POO</td>
<td>plan of operations</td>
</tr>
<tr>
<td>RC</td>
<td>reverse circulation</td>
</tr>
<tr>
<td>RCA</td>
<td>Riparian Conservation Area</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>SPCC</td>
<td>spill prevention control and countermeasures</td>
</tr>
<tr>
<td>SWPPP</td>
<td>stormwater pollution prevention plan</td>
</tr>
<tr>
<td>TESPC</td>
<td>threatened, endangered, sensitive, proposed, and candidate</td>
</tr>
<tr>
<td>USC</td>
<td>U.S. Code</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>var.</td>
<td>variety</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

Midas Gold, Inc. (MGI) holds unpatented and patented mineral claims in the Stibnite-Yellow Pine District in central Idaho and has initiated mineral exploration activities as part of the Golden Meadows Exploration Project. The objective of mineral exploration activities is to better define the mineral resource potential. Others gathered mineral deposit data during the 1940s and 1950s and MGI gathered data from 2009 through 2011 to support current mineral estimations. This plan of operations (POO) addresses mineral exploration activities starting after completion of permitting.

The activities on public lands described in this POO, which fall under the jurisdiction of the Krassel Ranger District, Payette National Forest (PAF), are authorized under U.S. mining laws of May 10, 1872, as amended (30 U.S. Code [USC] 22 et seq.), and applicable regulations found at in 36 Code of Federal Regulations (CFR) 228 Subpart A. This plan incorporates additional changes to the original POO, which was submitted in January 2012, as requested by the authorized official, under the authority at 36 CFR 228.5(a)(3), after various consultations with third-party agencies and tribal authorities and analysis under the National Environmental Policy Act (NEPA).

1.1 General Information

<table>
<thead>
<tr>
<th>Name of project:</th>
<th>Golden Meadows Exploration Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of operation:</td>
<td>Mineral Exploration</td>
</tr>
<tr>
<td>Proposed start-up date:</td>
<td>Following completion of permitting</td>
</tr>
<tr>
<td>Expected total duration of this Plan of Operations:</td>
<td>3 years</td>
</tr>
<tr>
<td>Expected date of final completion of all required reclamation:</td>
<td>3 years and 1 month after completion of permitting</td>
</tr>
</tbody>
</table>

1.2 Project Owner/Operator

Claim Owner:
Midas Gold, Inc.
405 S. 8th Street, Suite 201
Boise, ID 83702

Authorized Field Representative:
Richard Moses
Field Operations Manager
13181 Highway 55
Donnelly, ID 83615
Tele: 208.901.3060
Fax: 208.325.9273
Corporate Contact:
Rocky Chase
VP Environment and Permitting
405 S. 8th Street, Suite 201
Boise, ID 83702
Tele: 208.995.6730
Fax: 208.424.8800

1.3 Land Status

As of November 2011, MGI’s holdings consist of approximately 29,223 acres (11,826 hectares (ha)) of unpatented and patented claims. This includes 1,518 federal unpatented load claims and 46 federal unpatented millsite claims, which provide MGI the rights to mine and explore for minerals on these lands. The property also consists of 65 patented load claims and 30 patented millsite claims. A temporary driller and geologist camp and utility buildings are located on patented millsite claims (see Section 6.0). The combined patented claims account for 1,350 acres of private lands. A claims map and list of holdings is presented in Attachment F.

1.4 Document Control

MGI may apply for, and the U.S. Forest Service (USFS) may approve changes in this POO as result of planned change to the project. Furthermore, USFS may direct that changes be made to the POO because of unanticipated changes detected through project monitoring programs.

Each section of the POO will be dated. There will be two official copies of the POO: one at MGI’s environmental office at the project site, and the other at the USFS office. It will be the responsibility of the designated MGI official to update these two documents, as needed.
2.0 PROJECT LOCATION

The proposed MGI exploration drilling areas are located in Sections 1, 2, 3, 10, 11, 12, 13, 14, 15, Township 18 North, Range 9 East, and Section 35, Township 19 North, Range 9 East, Boise Meridian, Valley County, Idaho. The areas fall within the Stibnite, 1:24,000 U.S. Geological Survey (USGS) topographic quadrangle. Figure 1 is a vicinity map showing road access to the project site.

During the snow-free operating season, the project site can be accessed from the City of Cascade by traveling northeast on Warm Lake Road [Forest Highway (FH) 22 and Forest Service road (FS) 579] for about 37 miles to Landmark, then north on Johnson Creek Road (FS 413) for 28 miles to Yellow Pine, and 14 miles east on Stibnite Road (FS 412) to the project site (Figure 1). The project site can also be accessed from McCall during non-winter conditions by traveling east on Lick Creek Road (FS-412) for 33 miles to East Fork Road (FS 412), then 16 miles to Yellow Pine, and 14 miles on Stibnite Road (FS 412) to the project site. During winter, the project site can be accessed only from Cascade by traveling 35 miles northeast on Warm Lake Road (FS 579) to Knox, then north on South Fork Road (FS 474/674) for 32 miles to East Fork Road (FS 412), 16 miles east on East Fork Road to Yellow Pine, and 14 miles on Stibnite Road (FS 412).

For winter drilling, MGI will maintain Stibnite Road (FS 412) between Yellow Pine and the project site to remain accessible to four-wheel-drive and/or chained vehicles in cooperation with Valley County. If snow becomes too deep or dangerous (e.g., avalanche danger) for snow removal activities, or if snow plowing creates too much potential for sediment loss to surface water, Stibnite Road will be snow-groomed using a snowcat, and access to the site will be via enclosed heated snowcat. MGI will coordinate the winter use of National Forest System (NFS) roads with Valley County (VC) Boise National Forest (BOI) and PAF staff to ensure road use is consistent with the current PAF road use regulations, and that there are no conflicts with any planned NFS or county road construction, road repair, or road closure activities.
Figure 1. Location of Proposed Golden Meadows Project
Midas Gold Inc., Golden Meadows Exploration Project
3.0 ACCESS AND ROAD SEGMENT DESCRIPTIONS

Table 1 lists site names identifying drilling areas, which will be used throughout this document, and which are shown on accompanying Attachment A figures. In addition, land ownership for each of the drill areas is shown. Figure 2 presents a map that shows the general locations of the exploration drill sites.

Twenty-two of the 24 drill areas would be accessed by helicopter and contain temporary helicopter-supported drill pads. No temporary roads would be constructed to these 22 drill areas. Equipment and crew would be transported to the drill areas by helicopter. Of the remaining two drill areas, one is located directly adjacent to Stibnite Road (FS 412) and would not require road construction or helicopter access. The other, North Stibnite, would require construction of approximately 0.32 miles of temporary road. Road authorization for existing roads would also be required to access this drill area for drilling activities as well as for ongoing reclamation and monitoring activities.

3.1 North Stibnite (Attachment A, Sheet 3)

MGI proposes to use temporary authorized roads to access the site. Temporary road construction at the site will include approximately 600 linear feet. In addition, approximately 1,111 linear feet of old roadbed will potentially be used for drilling. Table 1 shows disturbance estimates associated with the new temporary road and the opening of the old road beds. Average side slopes for the spur and old beds are approximately 10 to 30 degrees. To minimize sediment runoff from the temporary road and roadbeds, water bars, silt fencing certified weed-free waddles and/or weed-free straw bales will be installed in strategic downslope areas. Upon completion of drilling, this road segment and old roadbeds will be obliterated and reclaimed. Table 1 shows estimated disturbance associated with the new temporary road segment and the proposed drill pad and drill sump at this location. Upon termination of drilling in this area, the temporary road will be obliterated and reclaimed according to the reclamation plan. Section 4.0, describes each of the 24 drill sites and access to each site. Of these 24 sites, all are partially or wholly on NFS land.
Table 1. Summary of Proposed Drilling Activities

<table>
<thead>
<tr>
<th>Prospect</th>
<th>Figure ID (Attachment A)</th>
<th>No. of Holes</th>
<th>No. of Pads</th>
<th>No. of Sumps</th>
<th>Heli-portable platform</th>
<th>Temporary Road Construction</th>
<th>Land Ownership</th>
<th>Disturbed Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Stibnite</td>
<td>Sheet 1</td>
<td>10 (7/3)</td>
<td>5</td>
<td>5</td>
<td>No</td>
<td>Yes (1,711ft) (1.49ac/0.29ac)</td>
<td>NFS/Private</td>
<td>67,920 FS 13,386 Private</td>
</tr>
<tr>
<td>Huckleberry</td>
<td>Sheet 2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>East Stibnite</td>
<td>Sheet 3</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>Sheet 4</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>8,580</td>
</tr>
<tr>
<td>IPAB</td>
<td>Sheet 5</td>
<td>2 (1/1)</td>
<td>2 (1/1)</td>
<td>2 (1/1)</td>
<td>Yes</td>
<td>No</td>
<td>NFS/Private</td>
<td>628 FS 628 Private</td>
</tr>
<tr>
<td>IPA</td>
<td>Sheet 6</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>South Midnight</td>
<td>Sheet 7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>Tesla</td>
<td>Sheet 8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>572</td>
</tr>
<tr>
<td>Upper Midnight - 2</td>
<td>Sheet 9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>572</td>
</tr>
<tr>
<td>Ridgetop</td>
<td>Sheet 10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>IPC</td>
<td>Sheet 11</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>No</td>
<td>No</td>
<td>NFS</td>
<td>3,770</td>
</tr>
<tr>
<td>Plasma</td>
<td>Sheet 12</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>572</td>
</tr>
<tr>
<td>Upper Midnight</td>
<td>Sheet 13</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>West Garnet</td>
<td>Sheet 14</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>1,716</td>
</tr>
<tr>
<td>Blue Lightning</td>
<td>Sheet 15</td>
<td>5 (3/2)</td>
<td>2 (1/1)</td>
<td>2 (1/1)</td>
<td>Yes</td>
<td>No</td>
<td>NFS/Private</td>
<td>628 FS 628 Private</td>
</tr>
<tr>
<td>Fulgarite</td>
<td>Sheet 16</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>1,644</td>
</tr>
<tr>
<td>Cubscout</td>
<td>Sheet 17</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>572</td>
</tr>
<tr>
<td>Gamet</td>
<td>Sheet 18</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>5,360</td>
</tr>
<tr>
<td>West Rabbit</td>
<td>Sheet 19</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>5,720</td>
</tr>
<tr>
<td>East Rabbit</td>
<td>Sheet 20</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>2,860</td>
</tr>
<tr>
<td>Saddle</td>
<td>Sheet 21</td>
<td>25</td>
<td>21</td>
<td>14</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>11,508</td>
</tr>
<tr>
<td>Box</td>
<td>Sheet 22</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>NFS</td>
<td>753</td>
</tr>
</tbody>
</table>
Table 1. Summary of Proposed Drilling Activities

<table>
<thead>
<tr>
<th>Prospect</th>
<th>Figure ID (Attachment A)</th>
<th>No. of Holes</th>
<th>No. of Pads</th>
<th>No. of Sumps</th>
<th>Heliportable platform</th>
<th>Temporary Road Construction¹</th>
<th>Land Ownership</th>
<th>Disturbed Area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doris K</td>
<td>Sheet 23</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>NFS</td>
<td>5,360</td>
</tr>
<tr>
<td>Northeast Extension</td>
<td>Sheet 24</td>
<td>15 (7/8)</td>
<td>10 (5/5)</td>
<td>10 (5/5)</td>
<td>Yes</td>
<td>No</td>
<td>USFS/Private</td>
<td>2,860 FS 2,860 Private</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144,117 ft² (3.3 ac)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,502 ft² (0.40 ac)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161,619 ft² (3.7 ac)</td>
</tr>
</tbody>
</table>

¹ Temporary roads are assumed to be 10 feet wide times the length, plus cut and fill based on slopes.

² Typical helicopter supported drill pad is 20 feet wide by 25 feet long (500 square feet). Steep slope pads are 16 feet wide by 18 feet long (288 square feet). Actual disturbance is smaller as typically only the upslope side requires digging to level timbers. Track rig pads are typically 25 feet wide by 25 feet long (625 square feet). Helicopter supported drill pad sumps are typically 6 feet wide by 12 feet long by 3 feet deep (216 cubic feet) with an area of 72 square feet. Track drill rig sumps are 8 feet wide by 16 feet long by 8 feet deep (1,024 cubic feet) and an area of 128 square feet.

³ Also includes drilling of one-sonic drill hole south of South Sugar for geotechnical sampling. The sonic drill rig does not require a drill pad or sump, drilling will be on existing road and no land disturbance is anticipated.

⁴ “(7/3)” means seven holes NFS land and three holes private land.
Legend

Access Road to Drilling Area
Public/Forest Service Road
New Road Construction on Old Road Bed
Can Potentially Be Used as Drilling Area
Re-open Old Road Bed
To be Used as Potential Drilling Area

Proposed Exploration Drilling Areas Requiring Temporary Road Construction
Proposed Exploration Drilling Areas Existing Borrow Source (To be Expanded)

Figure 2. Overview of Proposed Action Activities
Midas Gold Inc., Golden Meadows Exploration Project

Note: This figure shows the general activity area for the EA that encompasses the areas of the Proposed Action, including the temporary camp and exploration shop area, borrow area, exploration-drilling sites, and proposed temporary roads.
4.0 EXPLORATION DRILLING SITE DESCRIPTIONS

4.1 Proposed North Stibnite Drilling (Attachment A, Sheet 1)

The North Stibnite drill area will include drilling approximately 7 holes, 4 pads, and 4 sumps on NFS land. Exploratory holes will be drilled using a tracked core rig or equivalent. Drill pads will be on a constructed temporary road or previously decommissioned roadbeds. During the snow-free operating season, the site will be accessed by rubber wheeled vehicle on existing roads. Personnel, equipment, and supplies will be transported to the drill site by snowcat, or other tracked vehicle during the winter. Temporary authorized roads will be used to access the site. Temporary road construction at the site will include approximately 600 linear feet. In addition, approximately 1,111 linear feet of old roadbed will potentially be used for drilling. A total of approximately 67,920 square feet (1.56 acres) of NFS land will be disturbed at the North Stibnite drill area Attachment B presents selected photographs of the North Stibnite area.

4.2 Proposed Huckleberry Drilling (Attachment A, Sheet 2)

The Huckleberry drill area will include drilling approximately 5 drill holes, with 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the Huckleberry drill area Attachment B presents selected photographs of the Huckleberry area.

4.3 Proposed East Stibnite Drilling (Attachment A, Sheet 3)

The East Stibnite drill area will include drilling approximately 10 drill holes, with 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the East Stibnite drill area Attachment B presents selected photographs of the East Stibnite area.

4.4 Proposed Broken Hill Drilling (Attachment A, Sheet 4)

The Broken Hill drill area will include drilling approximately 15 holes, with 15 pads, and 15 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 8,580 square feet (0.20 acres) of NFS land will be disturbed at the Broken Hill drill area Attachment B presents selected photographs of the Hill Extension area.
4.5 **Proposed IPAB Drilling (Attachment A, Sheet 5)**

The IPAB drill area is located on both NFS and private lands. MGI proposes drilling approximately 1 hole on 1 pad with 1 sump, using a heli-portable core rig or equivalent. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. For winter operations, drilling fluids (water, drill mud, cuttings) will be contained in closed heated containers rather than use of a sump. A total of 628 square feet (0.01 acres) of NFS land will be disturbed at the IPAB drill area. Attachment B presents selected photographs of the IPAB area.

4.6 **Proposed IPA Drilling (Attachment A, Sheet 6)**

The IPA drill area will include drilling approximately 10 holes on 5 pads, with 5 sumps, using a heli-portable core rig or equivalent. The specific location of the sumps will be determined in the field, but will likely be within the footprint of an unvegetated area. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the IPA drill area. Attachment B presents selected photographs of the IPA area.

4.7 **Proposed South Midnight Drilling (Attachment A, Sheet 7)**

The South Midnight drill area will include drilling approximately 5 holes, with 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the South Midnight drill area. Attachment B presents selected photographs of the South Midnight area.

4.8 **Proposed Telsa Drilling (Attachment A, Sheet 8)**

The Telsa drill area will include drilling approximately 2 holes, with 1 pad, and 1 sump, using a heli-portable core rig or equivalent. Drilling will occur on existing/old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 572 square feet (0.01 acres) of NFS land will be disturbed at the Telsa drill area. Attachment B presents selected photographs of the Tesla area.

4.9 **Proposed UM-2 Drilling (Attachment A, Sheet 9)**

The UM-2 (Upper Mid-Night-2) drill area will include drilling approximately 2 holes, with 1 pad, and 1 sump, using a heli-portable core rig or equivalent. Drilling will occur on existing/old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 572 square feet (0.01 acres) of NFS land will be disturbed at the UM-2 drill area. Attachment B presents selected photographs of the UM-2 area.
be disturbed at the UM-2 drill area Attachment B presents selected photographs of the UM-2 area.

4.10 Proposed Ridgetop Drilling (Attachment A, Sheet 10)

The Ridgetop drill area will include drilling approximately 10 holes, with 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Equipment, supplies, and personnel will be transported to the drill location by helicopter and by foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the Ridgetop drill area Attachment B presents selected photographs of the Ridgetop area.

4.11 Proposed IPC Drilling (Attachment A, Sheet 11)

The IPC drill area will include drilling up to 10 holes, with 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Equipment, supplies, and personnel will be transported to the drill location by helicopter and by foot during the snow-free operating season and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 3,770 square feet (0.08 acres) of NFS land will be disturbed at the IPC drill area Attachment B presents selected photographs of the IPC area.

4.12 Proposed Plasma Drilling (Attachment A, Sheet 12)

The Plasma drill area will include drilling approximately 2 holes on 1 pad with 1 sump, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 572 square feet (0.01 acres) of NFS land will be disturbed at the Plasma drill area Attachment B presents selected photographs of the Plasma area.

4.13 Proposed Upper Midnight Drilling (Attachment A, Sheet 13)

The Upper Midnight drill area will include the drilling approximately 5 holes, 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the Upper Midnight drill area Attachment B presents selected photographs of the Upper Midnight area.

4.14 Proposed West Garnet Drilling (Attachment A, Sheet 14)

The West Garnet drill area will include drilling approximately 3 holes, 3 pads, and 3 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A
total of approximately 1,716 square feet (0.04 acres) of NFS land will be disturbed at the West Garnet drill area Attachment B presents selected photographs of the West Garnet area.

4.15 **Proposed Blue Lightning Drilling (Attachment A, Sheet 15)**

The Blue Lightning drill area will include drilling approximately 3 holes, with 1 pad, and 1 sump on NFS land, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds or in areas with no roads on NFS lands. Equipment, supplies, and personnel will be transported to the drill location by helicopter during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 628 square feet (0.01 acres) of NFS land will be disturbed at the Blue Lightning drill area Attachment B presents selected photographs of the Blue Lightning area.

4.16 **Proposed Fulgarite Drilling (Attachment A, Sheet 16)**

The Fulgarite drill area will include drilling approximately 5 holes, with 3 pads, and 2 sumps, using a heli-portable core rig or equivalent. Drilling will occur in open areas with no roads. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 1,644 square feet (0.04 acres) of NFS land will be disturbed at the Fulgarite drill area Attachment B presents selected photographs of the Fulgarite area.

4.17 **Proposed Cubscout Drilling (Attachment A, Sheet 17)**

The Cubscout drill area will include drilling approximately 2 holes, with 1 pad, and 1 sump, using a heli-portable core rig or equivalent. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 572 square feet (0.01 acres) of NFS land will be disturbed at the Cubscout drill area Attachment B presents selected photographs of the Cubscout area.

4.18 **Proposed Garnet Drilling (Attachment A, Sheet 18)**

The Garnet drill area will include drilling approximately 10 holes, with 10 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drilling will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 5,360 square feet (0.12 acres) of NFS land will be disturbed at the Garnet drill area Attachment B presents selected photographs of the Garnet area.

4.19 **Proposed West Rabbit Drilling (Attachment A, Sheet 19)**

The West Rabbit drill area will include drilling approximately 10 holes, with 10 pads, and 10 sumps, using a heli-portable core rig or equivalent. Three of the proposed pads will occur on old roadbeds. The remaining pads will be in open areas. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season,
and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 5,720 square feet (0.13 acres) of NFS land will be disturbed at the West Rabbit drill area. Attachment B presents selected photographs of the West Rabbit area.

4.20 Proposed East Rabbit Drilling (Attachment A, Sheet 20)

The East Rabbit drill area will include drilling approximately 5 holes, with 5 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drilling will occur in open areas with no roads. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the East Rabbit drill area. Attachment B presents selected photographs of the East Rabbit area.

4.21 Proposed Saddle Drilling (Attachment A, Sheet 21)

The Saddle drill area will include drilling approximately 25 holes, with 21 pads, and 14 sumps using a heli-portable core rig or equivalent. Drill pad footprints will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 11,508 square feet (0.26 acres) of NFS land will be disturbed at the Saddle drill area.

The Saddle drill area potentially contains habitat for bentflowered milkvetch, a USFS sensitive species. No seeding or mulching will be conducted in this drill area to protect the sensitive plant habitat. Attachment B presents selected photographs of the Saddle area.

4.22 Proposed Box Drilling (Attachment A, Sheet 22)

The Box drill area will include drilling approximately 2 holes with 1 pad, and 1 sump along Stibnite Road (FS 375), using a tracked core rig. Access to the site will be by tracked or rubber-tire vehicle along Stibnite Road (FS 375) roads or by foot in snow-free and winter conditions. A total of approximately 753 square feet (0.02 acres) of NFS land will be disturbed at the Box drill area. Attachment B presents selected photographs of the Box area.

4.23 Proposed Doris K Drilling (Attachment A, Sheet 23)

The Doris K drill area will include drilling approximately 10 holes, with 10 pads, and 5 sumps, using a heli-portable core rig or equivalent. Drill pads will occur on old roadbeds. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 5,360 square feet (0.12 acres) of NFS land will be disturbed at the Doris K drill area.

The Doris K drill area potentially contains habitat for bentflowered milkvetch, a USFS sensitive species. No seeding or mulching will be conducted in this drill area to protect the sensitive plant habitat.
Attachment B presents selected photographs of the Doris K area.

4.24 Proposed Northeast Extension Drilling (Attachment A, Sheet 24)

The Northeast Extension drill area will include drilling approximately 7 holes, with 5 pads, and 5 sumps on NFS land. Drill pads will occur on existing and old roadbeds using a heli-portable core rig or equivalent. Equipment, supplies, and personnel will be transported to the drill location by helicopter and on foot during the snow-free operating season, and by helicopter, snowcat, or other tracked vehicle during the winter. A total of approximately 2,860 square feet (0.07 acres) of NFS land will be disturbed at the Northeast Extension drill area. Attachment B presents selected photographs of the Northeast Extension area.
5.0 EQUIPMENT STAGING

Drill rods, casing, drill rigs, and non-perishable supplies will be mobilized to the site staging area adjacent to MGI’s core shack on private property via a flatbed truck or short-bed, high-clearance, low-boy trailer. Transport of equipment is generally done before mid-May or after June once load limits are lifted and road conditions permit. Some equipment is already on site from previously-permitted exploration activities. Road permits will be obtained as required. Equipment will be off-loaded adjacent to MGI’s core shop building. For activities proposed in this plan of operations, it is expected that approximately eight truckloads to the site along Stibnite Road will be required to mobilize the drill rigs, drill rods and ancillary equipment. The same procedures will be used to demobilize at the termination of the program after final reclamation is complete. For winter operations, equipment mobilization (if needed, as most equipment will already be on site) will likely take place in late November or early December. If snow removal ceases on Stibnite Road in late winter (see Section 2.0), transport of equipment to the site will be via helicopter or snowcat.

The drill rig assembly will consist of track-mounted core rigs, helicopter portable drill rigs, likely a lightweight low impact “buggy” or small track-mounted core drill rig (approximately 8,000 pounds fully assembled), casing, drill rods, drill bases, water line, water pumps, tools and ancillary equipment. These drill rigs vary in size, but are roughly 6 to 8 feet wide and 12 to 16 feet long fully assembled. Supplies will include drilling mud, bentonite (clay) hole plug material, cement for casing and capping holes and small amounts of lubricants (rod grease). Attachment C presents photographs of drill rigs and also of typical pad setup and operations.

A typical helicopter supported drill pad, comprised of a wood deck, drill rig, lubricant containment tray, mixer and mud pump, and water storage tank, is approximately 20 feet wide by 25 feet long (500 square feet) in footprint area. Steep slope pads are smaller at approximately 16 feet wide by 18 feet long, with typical deck size of 288 square feet. Actual ground disturbance is less than the footprint as usually only the upslope side requires digging in order to level the deck. Supplies include drilling mud, bentonite (clay) hole plug material, cement for casing and capping holes, and small amounts of lubricants (rod grease). A track-rig pad is generally larger than the helicopter supported drill pad (larger drill rig), and is typically 25 feet wide by 25 feet long (625 square feet) in footprint area.

A helicopter supported drill pad sump is typically 6 feet wide by 12 feet long and 3 feet deep (216 square feet) or covers an area of 72 square feet. On extremely steep slopes (≥35%), where there is a chance the sump water will not infiltrate into soil or could cause runoff, MGI will utilize a remote sump or portable recirculation tanks. Where possible, MGI will use common sumps (one sump for multiple pads) and put all mud cuttings and water into a single sump setup. This setup and procedure has successfully been used for over three years on the project.

Once drilling is completed, cuttings and mud will be buried in the sumps. The drill pads and sumps will be backfilled and the timber platforms removed and the pads re-leveled and graded back to their original contours using either hand tools or the mini-heli-portable spider hoe. Mulch and certified weed-free seed will be placed on the re-contoured sites.

All petroleum products will be transported in accordance with state and federal Department of Transportation (DOT) regulations, and handled and stored as per applicable state and federal petroleum product storage and handling laws and regulations. Access across NFS lands will be
conducted in accordance with 36 CFR 228.12. Fuel transportation standard operating procedure (ESOP-004) has been developed to address the transport of petroleum to the site and minimize the potential for accidents and impacts associated with potential fuel spills. Specific convoy procedures and accident mitigation measures described in ESOP-004 are discussed in Section 10.4.
6.0 STAFF LODGING, POTABLE WATER, AND WASTEWATER TREATMENT

6.1 Temporary Staff Housing

MGI will house geologic staff and drillers to support exploration activities on site on private land (see Figure 3) or off site in private residences in Yellow Pine.

6.2 Potable Water Supply for Man Camp

To support the man camp, a new potable well (camp well) was drilled on private land in the spring of 2012 near the camp and is illustrated in Figure 3.

A water treatment plant to treat for contaminants removal is located on private property adjacent to the man camp (“utility building” illustrated in Figure 3). Underground piping connects the well to the water treatment plant and to the camp. The camp well is operated under IDWR water right number 77-7141. The pipelines to connect the well to the water treatment plant and the water treatment plant to the camp are buried below frost depth in accordance with IDEQ requirements on previously disturbed, private land.

6.3 Wastewater Treatment for Man Camp

Wastewater from the man camp will be treated on site in a packaged wastewater treatment plant. The plant is designed to treat wastewater with a membrane biological reactor (MBR) to meet Class A municipal recycled water quality as per Idaho Administrative Procedures Act (IDAPA) 58.01.17. The treatment system is housed in the utility building illustrated in Figure 3. The Class A treated water will be reused through a number of potential options, including land application, drill water makeup, subsurface disposal, and toilet flushing. MGI has obtained a wastewater reuse permit (M-228-01) through IDEQ prior to wastewater treatment startup. This permit will also include reclaimed water approved uses and monitoring requirements to ensure regulatory compliance. A 30,000-gallon storage tank for Class A reuse water is located adjacent to the treatment system.

6.4 Wastewater Treatment for Drill Sites

A “port-a-potty” will be set up adjacent to select drill sites or at the closest feasible location for sewerage, serviced by a licensed contractor, and removed upon completion of drilling at each site.
Figure 3. Proposed Temporary Camp Facilities and Borrow Area
Midas Gold Inc., Golden Meadows Exploration Project
7.0 BORROW SOURCE

An existing borrow source on NFS land just east of the current temporary camp and shop area (Figure 3) would be re-opened and expanded to provide an estimated 7,000 cubic yards of crushed gravel to support the exploration program, including road maintenance. The borrow rock would be crushed and applied in areas such as roadbeds and in culverts to help reduce sedimentation to adjacent streams. The proposed rock source was used by previous operators. The footprint of the quarry would be approximately 42,300 square feet, including work area around all sides of the quarry, for a total of approximately 1 acre of land disturbance. Extracted borrow material would be loaded on trucks and transported to a staging area on private land. Spoil material produced from processing the material from the borrow source that is too fine to use as gravel would be used as a soil amendment filler (if suitable) or incorporated into the reclamation of the borrow source.

For the borrow source, standard reclamation practices would be followed, including segregating and stockpiling topsoil, implementing stormwater and sediment BMPs, backfilling and placing topsoil, and re-vegetating. The spoil material (materials too fine to use as gravel) produced from the processing of the material from the borrow pit would be used either as a soil amendment filler (if suitable) or incorporated into the reclamation of the borrow pit.
8.0 SUMMARY OF PRIVATE LAND AND FOREST SERVICE LAND DISTURBANCE AREA

Table 2 summarizes land disturbances for NFS and private lands based on proposed drilling activities (Table 1) and proposed borrow source. In total, approximately 5.0 acres of NFS lands will be disturbed.

Table 2. Summary of Disturbance Area Associated with the Plan of Operations Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>NFS Land (acres)</th>
<th>Private (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure: Temporary camp, water, and wastewater treatment</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Borrow source area</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Exploration drilling activities</td>
<td>3.3</td>
<td>0.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Total</td>
<td>4.3</td>
<td>2.8</td>
<td>7.1</td>
</tr>
</tbody>
</table>
9.0 OPERATIONS

Drill pads for helicopter rigs (22 of the 24 sites, Table 1) will be constructed using hand tools and sumps may be dug with hand tools and/or a small heli-portable “Digger” or “Can-Dig” type spider hoe weighing around 1,200 pounds. Platforms for the pads will be constructed with timber flown into the site to minimize ground disturbance from the rig while drilling. Minor brush clearing, but only minimal tree cutting may be required to clear areas for the drill platforms and to provide a safety zone around the drill rig and ancillary equipment. Silt fences, weed-free waddles and other sediment and water management control procedures will be used as outlined below and described in the State of Idaho’s Best Management Practices for Mining in Idaho.

Once completed, holes will be backfilled, the timber platforms removed, and the pads re-leveled and graded back to their original contour, using either hand tools or the mini-heli-portable spider hoe. Mulch and certified weed-free seed will be placed on the re-contoured sites.

Track-drill rig platforms will be constructed using hand tools or possibly a small wheeled backhoe or tracked dozer (Caterpillar D-3 or D-4 or equivalent). Minor brush clearing, but only minimal tree cutting may be required to clear areas for the drill platforms and to provide a safety zone around the drill rig and ancillary equipment. Silt fences, weed-free waddles and other sediment and water management control procedures will be used as outlined below and described in the Idaho BMP Handbook.

Vegetative matter produced during any brushing, as well as topsoil, where present, will be stockpiled and used later in reclamation. The drill rig, drill rods, stock tanks for mud mixing and ancillary tools and equipment will be set up on the drill pad using the helicopter, or with a truck or forklift, or carried and stored on the track-mounted drill rig and support vehicle.

Personnel will access the drill sites by helicopter, on foot, all-terrain vehicle (ATV), snowcat, or pickup truck (where existing roads exist) (see Section 4.0 for description of access to each site). The core drilling rigs will be used to drill up to 178 core holes from 24 target areas. Hole diameters will range from standard tube size HQ (63.5 millimeter) to NQ (47.6 millimeter) and holes will be drilled between 200 to 1500 feet deep.

For helicopter supported drill sites, a helicopter will transport fuel to the drill rig in double-walled reinforced fly tanks. Where existing roads are available, fuel will be brought to the drill site (approximately 50-80 gallons per day) in a pick-up truck-mounted fuel tank or in sealed 55-gallon drums in an ATV-trailer. There will be no creek crossings for fuel delivery by pick-up or ATV. Standard fuel handling BMPs and spill prevention control and countermeasures (SPCC) practices will be employed. MGI has implemented an SPCC plan for the site that addresses management of site petroleum products including lubricants, waste oil and disposal of these materials and their containers.

For winter drilling, drill pads will be developed either by setting up directly on thick snowpack (24 inches+), or if site conditions permit and will not produce a risk of runoff or erosion, a pad will be developed by removing snow and possibly performing light earthwork to prepare a leveled area. Snow removal and earthwork will be by hand tools or a heli-portable backhoe.

Mud collection sumps will be dug by hand or using a helicopter-transportable backhoe capable of digging a sump. Sumps will be located on road areas where possible and practical to minimize disturbance. Cuttings will be placed directly into the sump or in a heated conex set up with mud
collection tanks and a clarifier. After completing each hole, the clarifier cuttings and mud will be buried in the sump.

For winter drilling, water for drilling will be pumped in insulated water lines with water line heaters staged periodically along the lines from water sources. Pumps with heaters will be contained in the skid-mounted conex (shipping container). Water/drilling mud will be re-circulated until no longer useable, then pumped to the sump.

Prior to winter, MGI will fill all on-site fuel storage tanks (existing total of approximately 55,500 gallons) as needed to support winter operations. NO fuel hauling activities are authorized on the South Fork Road to support this exploration plan.

MGI will monitor drill sites and other reclaimed drill areas during spring runoff to ensure that BMPs are in place and working so that soil erosion is minimized.
10.0 STANDARD OPERATING PROCEDURES

This section defines SOPs that MGI will follow (unless unforeseen conditions require changes) during and after completion to avoid or minimize adverse impacts on the human and natural environment.

As part of project SOPs, BMPs outlined in the Idaho Department of Land’s 1992 *Best Management Practices for Mining in Idaho* will be implemented where appropriate and applicable for operations to minimize site disturbance from drilling activities and to ensure operations are in compliance with all applicable local, state and federal regulations. Moreover, project SOPs include components of the *Payette National Forest Land and Resource Management Plan* (Forest Plan) standards and guidelines that are designed to reduce or prevent undesirable impacts resulting from proposed management activities in the PAF.

Additionally, MGI has committed to a number of additional environmental procedures for the life of the project. These additional environmental commitments form part of the basis for the effects analysis conducted for the USFS’s September 2015 Golden Meadows Exploration Project environmental assessment (EA) for this project and the subsequent effects determinations. As such, they are part of MGI’s POO (See Attachment G).

10.1 Air Quality/Noise

- A water truck equipped with a misting sprayer would be used on frequently traveled road segments to minimize dust generation. Lignin sulphonates or other approved dust suppressants may also be applied as per manufacturer’s instructions and in accordance with the Programmatic Biological Opinion on Road Maintenance.
- Following speed limits would be emphasized with staff and contractors and would be adhered to. If significant dust generation is produced, vehicles would be requested to slow down to speeds necessary to minimize the fugitive dust generation or the route would be watered.
- Construction equipment engines would be equipped with adequate mufflers, intake silencers, and engine enclosures when feasible.
- When practicable, pumps, generators, and engines would be turned off when not in use.
- When practical, a temporary structure would be erected around portions of the drill, pumps and heaters, but so as not to create worker safety issues related to exhaust vapor build-up. The drill engine would be inside the structure, and acoustic absorbent panels would be placed on the inside walls of the structure to absorb noise.
- Drill contractor would install mufflers or similarly effective sound control devices on all engines at the drill rig.
- There will be no helicopter activity during the hours of darkness unless required for medical or other emergency.
- Noise reduction effectiveness of typical control measures would be monitored at the beginning of each drilling year after installation of the system. This monitoring would be done to document the efficiency of control measures employed at the site.
10.2 Water Quality

- Drilling fluid would be mostly water, with various drilling additives to increase viscosity or reduce fluid loss. All drilling additives used will meet NSF/ANSI Standard 60 whose guidelines govern drinking water treatment chemicals and include drilling fluid additives used during drilling water wells. This standard addresses the health effects of these additives.
- Water for drilling will be recycled, to the extent possible and practical, to minimize the need for active water withdrawals, by routing drill return water to standard stock tanks or a drill sump below the rig platform.
- Water withdrawals for drilling from surface water would be made only at approved points of diversion (POD) and would not produce significant reductions in stream water flows from the intake sites.

Table 3 Water Withdrawal Diversion Rates

<table>
<thead>
<tr>
<th>Diversion Point</th>
<th>Approximate Diversion Rate</th>
<th>Daily Rate (gallons)</th>
<th>Max Total Usage</th>
<th>Notes (diversion flows are a guideline only Some Flows must be measured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiddle Creek</td>
<td>18 gpm</td>
<td>20,000</td>
<td>5 acre feet (1,629,257 Gallons)</td>
<td>DN/FONSI Limit & Mitigation agreement of not more than 10% of flow. Measure flow on a biweekly basis for allowable Diversion Rate.</td>
</tr>
<tr>
<td>Hennessy Creek</td>
<td>15 gpm</td>
<td></td>
<td></td>
<td>This temporary water use is mitigated by not utilizing water right 77-7293 which has a water right usage of 20 Acre Feet</td>
</tr>
<tr>
<td>Yellow Pine Pit</td>
<td>148 gpm</td>
<td></td>
<td></td>
<td>This temporary water use is mitigated by not utilizing water right 77-7285 which has a water right usage of 30.2 Acre Feet</td>
</tr>
<tr>
<td>Midnight Creek</td>
<td>18 gpm</td>
<td>20,000</td>
<td>5 acre feet (1,629,257 Gallons)</td>
<td>DN/FONSI Limit & Mitigation agreement of not more than 10% of flow. Measure flow on a biweekly basis for allowable Diversion Rate.</td>
</tr>
<tr>
<td>Gestrin Well</td>
<td>150 gpm</td>
<td>20,000</td>
<td>5 acre feet (1,629,257 Gallons)</td>
<td>This temporary water use is mitigated by not utilizing water right 77-7285 which has a water right usage of 30.2 Acre Feet</td>
</tr>
</tbody>
</table>

- Withdrawals of water from streams or groundwater wells for exploration activities would be in accordance with water rights (both temporary and permanent) and the biological assessment. For water withdrawals from streams, a 3/32-inch diameter screen would be placed on water pump intake hoses for drill water withdrawals to reduce risk to aquatic species that might be present by entrapment in the suction hose as per recommendations.
from the National Marine Fisheries Service (NMFS) aquatics biologist. Pumps would use velocity-reducing devices to eliminate the risk of entrapment of aquatic species.

- Surface water withdrawal intake hoses would be situated so as to prevent generation of turbidity in bottom sediments during pumping.
- Pumps would be turned off when not in use and water conservation practices will be implemented.
- Intake pumps would not be situated within the active stream/ditch channel and would be placed within containment vessels capable of holding 120 percent of the pump engine’s fuel, engine oil and hydraulic fluid. The smallest practical pump and intake hose would be used.
- Following large storm events, the intake pumps would be inspected to determine if stream flow has encroached into the pump area and if the pump needs to be moved so it remains above flowing water.
- A spill prevention and clean-up kit would be placed at the intake pump site and would consist of absorbent pads and/or boom, drip pan, a shovel, and a fire extinguisher.
- Spare fuel for the water intake pump would be stored in approved [29 CFR 1926.152(a) (1)] fuel storage containers placed into a secondary containment vessel capable of holding at least 120 percent of the volume of the fuel in the fuel container.
- Bulk fuel tanks (storage vessels greater than 55-gallons) would be stored on private property.
- Intake pumps, fuel storage, and containments would be periodically inspected and at each refueling.
- A portable toilet would be set-up adjacent to select drill sites or at the closest feasible location for sewerage, serviced by a licensed contractor, and removed upon completion of drilling at each site.
- Any on-site portable toilets would be located away from any surface water bodies and would be serviced by a state licensed sewerage waste disposal contractor.
- Boreholes are promptly abandoned as required by the Idaho Rules Governing Exploration, Surface Mining, and Closure of Cyanidation Facilities (IDAPA 20.03.02) after reaching their total planned depth. Borehole abandonment would generally take place within hours of borehole completion to avoid the need to bring the drilling rig back to the site later. If the annular space of the casing has been sealed with cement (as is the case with boreholes expected to encounter artesian conditions), the casing is left in place. If the annular seal is bentonite, the temporary surface casing is removed before abandonment.
- When drilling is terminated, abandonment procedures would be initiated. The drill hole would be surveyed with a gyroscopic device, camera, or other down hole instrument to accurately determine the borehole’s location in three-dimensional space. Information would be recorded at various depths from the bottom of the hole to the collar and recorded in the drill hole log.
- Borehole abandonment entails plugging the holes from bottom to top with a low-permeability bentonite-based grout (Benseal®), which seals off all water transmission. In order to ensure a continuous seal throughout the hole, the grout would be pumped down
the hollow drill string starting at the bottom of the hole. As the hole is filled the drill string would be withdrawn, but never pulled above the surface of the ascending column of grout, as this could produce voids. After the grout has risen to within approximately 3 feet of the ground surface and has set up, the remainder of the hole would be plugged with cement. In the case of abandonment of a flowing artesian drill hole, neat cement grout would be used to seal the entire borehole instead of bentonite grout.

- Each drill hole would be abandoned from the bottom to the collar by filling the hole with a thickened grout mixture.
- During drill hole abandonment, sufficient grout would be added to maintain a steady supply of grout as the hole is plugged. The driller would monitor the filling of the hole by noting the pressure gages indicating the grout has saturated the voids. If a significant aquifer is encountered, an inflatable or mechanical packer device may be used in addition to the grout materials to provide additional aquifer protection.
- Once the drill hole is completely sealed the project geologist or drilling manager would approve the hole-plugging operation prior to the rig being moved off site to ensure integrity of the hole plugging process. The timing for initiating and completing borehole abandonment is as soon as practicable after the geologic information has been interpreted. Abandonment of each borehole would be properly documented.
- Exploration drilling would not occur during peak spring “break-up” conditions.
- Associated transportation requirements would be limited during peak spring “break-up.”
- On drilling sites where sumps are necessary but impractical due to slope or soil conditions, a casing diverter and a hose would be used to divert drilling water to a sump located in an adjacent and appropriate site or to portable recirculation tanks.
- Drill holes would be cased to bedrock.
- For drill pads within 300 feet, but no less than 100 feet of streams, pad construction during the snow-free season would occur in old roadbeds or other previously disturbed areas, wherever possible.
- Sumps would not be located in RCAs.

10.2.1 Additional Water Quality-related Environmental Commitments

- Drilling activities will comply with Well Construction Standards Rule (IDAPA 37.03.09)
- Section 6 of Idaho Department of Land’s Best Management Practices for Mining in Idaho, would be observed, including if water is encountered in exploration holes; it would be sealed off during abandonment to prevent crossflow.
- If artesian conditions or geothermal waters (>85°F) are encountered, holes would be plugged as specified in IDWR guidelines and regulations. IDL and IDWR would be notified for record keeping purposes.
- All activities would be conducted in accordance with Idaho environmental anti-degradation policies, including IDEQ water quality regulations at IDAPA 58.01.02 and applicable federal regulations.
- Stormwater monitoring, inspections, and reporting would be conducted in accordance with the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) and the stormwater pollution prevention plan (SWPPP).

- MGI would implement additional surface water quality baseline turbidity monitoring (daily during break-up, not to exceed a period of 3 weeks), provided the sampling sites are safely accessible. Monitoring would include: 1) one station upstream in Meadow Creek above the SODA; 2) one downstream in Blowout Creek above the confluence with Meadow Creek; and 3) one above and below the confluence of Meadow Creek and the East Fork of the South Fork of Salmon River (EFSFSR).

- Drill pads would not be located within 100 feet of streams.

- Drill pad locations within RCAs would require FS concurrence that no reasonable alternative location exists.

- Drillers would be informed of these locations and would exercise increased vigilance for instances of lost circulation at shallow depths.

- The casing would be advanced simultaneously behind the core drill through the alluvial section of all drill holes as described in Section 2.1.1.

- Areas would be identified in advance where there is an increased chance of the surface expression of drilling fluids. The process of identifying areas of increased risk would utilize the following criteria:
 - Relation of the drill pad to historic mining activity including:
 - Blast fractured rock
 - Backfilled pit benches
 - Waste rock stockpiles
 - Anticipated depth to bedrock (how much overburden)
 - Composition of overburden material
 - Angle and orientation of the drill hole
 - Proximity to natural, heavily fractured, bedrock zones (ie. Meadow Creek fault)
 - Natural overburden material anticipated thickness
 - pad and projected drill hole to surface
 - water bodies and wetlands

- Adjacent slopes below the drill rig and stream channels (if drilling in RCAs) in these areas would be regularly monitored during drilling by environmental technicians for any evidence of surface leakage.
Silt fence, straw wattles, portable sumps, pumps, and hoses would be pre-staged for emergency use. These materials and tools would be used to quickly construct temporary sumps to capture drilling fluid and return it to the drill rig.

For locations that are deemed to be of sufficient risk to warrant the pre-staging of response materials, a Forest Service representative would verify that such measures are in place on the ground prior to drilling.

A gate will be installed within 300 feet upstream of the bridge just east of the Profile Gap Road (FS 340) and Stibnite Road (FS 412) intersection. The gate would be located and designed to prevent access to full-sized motor vehicles. The gate would be used to regulate traffic during the snow plowing season with the principal focus during the spring break-up period. During the snow plowing season the gate would be closed when Valley County is regulating access to avoid road damage, such as rutting, which can lead to excessive erosion and deterioration of the road overall. During times when the gate is closed, administrative access for landowners, law enforcement, and County, State and Federal administrative personnel may be permitted by Valley County following criteria for use designed to avoid road damage and erosion. Valley County would coordinate installation location with the Forest Service to avoid damaging road counters located near the intersection.

10.3 Hazardous Materials and Previous Mining Operations

Garbage containers would be located in an un-vegetated area and trash would be removed regularly and disposed of in an IDEQ-approved waste disposal facility. Food and garbage will be stored either indoors, in vehicles, or if outside, in bear-proof containers. No garbage would be burned unless a burn permit is obtained. If garbage is burned, burning would take place in a secure area free from vegetation and flammable materials, at least 500 feet away from streams or water bodies, and ash would be removed and disposed of in an IDEQ-approved waste disposal facility.

At project completion, all equipment, supplies and refuse would be removed from the project site and disposed of according to established solid and liquid waste management practices and applicable local, state and federal laws and regulations. Project activities would not generate materials regulated as “hazardous” or “toxic” waste with the exception of the handling of fuel-related products.

Johnson Creek Road would be used for fuel transport to the site. If Johnson Creek Road is closed due to snow, then no fuel would be transport of fuel to the project site.

A standard marine-type fuel containment boom, spill prevention kit and fire kit would be stored at the re-fueling site and would be readily available during off-loading of fuel from the fuel truck or during re-fueling operations.

A spill prevention and cleanup kit consisting of absorbent pads, absorbent booms, shovels and a fire extinguisher would be placed at the fuel storage site (private property), at the core shack (private property), and drill sites or any other areas where fuel and/or petroleum products are present.
• After completing operations, all empty fuel and lubricant containers would be removed from the operations area and, transported and disposed in accordance with local, state, and federal requirements.

• No toxic or hazardous substances would be used on site, except for standard petroleum fuel and lubricant products (diesel, gasoline, grease and hydraulic oils), and “over-the-counter” retail products. Use of all chemicals would be in accordance with manufacturer label.

• Annual spill awareness/response training would be required for on-site personnel and suppliers/providers.

• Two or more stored spill containment/response caches would be placed along the fuel delivery route.

10.3.1 Additional Hazardous Materials and Previous Mining Operations-related Environmental Commitments

• Fuel would be stored on private property in sealed 55-gallon steel drums, approved double-walled fuel tanks, or in approved single-walled tanks within secondary containment. Fuel would be managed, tanks would be inspected, and any oil release would be responded to in accordance with the SPCC plan.

• Typically, fuel would be delivered to the drill rig in a 100-gallon doubled-wall tank mounted to a pick-up truck, tracked vehicle, or by helicopter.

• All fuel containers would be marked with contents, owner’s name and contact information.

• Fuel containment sites, engines and other equipment with fuel or lubricants would be periodically checked for leakage or spillage and in accordance with the SPCC plan.

• The SPCC plan would be kept at the core shack or office trailer. Staff handling fuel or petroleum products would be trained to successfully implement the SPCC plan. Inspections of fuel storage and handling areas would be conducted as specified in the SPCC plan. Appropriate warning signs would be placed around fuel storage facilities.

• All contractors and company staff involved in handling oil and other chemicals would be made aware of the site SPCC plan, spill kit locations, and appropriate emergency response procedures, and would be required to abide by all applicable federal, state and local laws and regulations pertaining to their respective operations.

• Should any oil or chemical discharges or spills occur, the release would be reported to IDEQ and other appropriate agencies as required by applicable federal and state regulations by phone and/or fax immediately (or as soon as possible after on-site containment efforts are implemented as per the SPCC plan). Spill response would be in accordance with the SPCC plan. Spills or discharges would be documented in writing.

• Drilling mud and hole plug products would conform to American Petroleum Institute (API) guidelines for ensuring groundwater integrity. Safety and data sheets (SDS) for all products would be posted and available on site.

10.4 Fuel Transport Management
A fuel transportation SOP has been created for the project that analyzes measures for minimizing the potential for fuel spills along the main route into the activity area. The fuel transportation SOP would be followed for all activities associated with fuel delivery.

- **The day of the convoy:**
 - Prior to the convoy leaving Cascade a health and safety meeting would be conducted with the convoy staff. Topics to be discussed at a minimum:
 - Anticipated road conditions and weather forecast.
 - Roles and responsibilities of all participants.
 - Communication plan protocols (including truck to truck radios, satellite phones, site communication when the convoy reaches Yellow Pine, and notification protocol in event of accident or fuel release).
 - Emergency response procedure and available equipment. Goals of on-site first responders, safety issues, and protocols.
 - Emergency numbers and call order.
 - SPOT™ GPS (global positioning system) Messenger (or equivalent operation (provides satellite tracking of convoy location and has emergency notification capabilities).
 - Discussion of proper pace (speed), separation distance, driver fatigue, scheduled, and unscheduled stops.

- In the unlikely event of a helicopter crash into water, Midas emergency responders will be notified by radio. One group would immediately respond to the crash site, to render assistance, medical aid, and employ environmental precautions including stabilization of the site, deploying booms, and absorbent pads, and pumping off excess fuel from the helicopter. A second Midas emergency response team would also mobilize and head to the outlet areas of the Glory Hole, or to the junction with Sugar Creek, to deploy secondary absorbent booms across the river. Midas also maintains a section of “sea curtain” boom on site, which is designed for use in the relatively quiet water of the Glory Hole. The Emergency response team leader would notify senior Midas personnel, and emergency medical or fire responders, as appropriate.

- Helicopter flight times would be minimized over area waterways, especially flights over Meadow Creek, EFSFSR, and the Glory Hole, in accordance with FAA regulations, to the greatest extent possible. Stream corridors would not be used as routine helicopter flyways.

- Midas Gold would provide helicopter transport for USFS personnel if needed for purposes of administering the Golden Meadows exploration operation. This would occur on a limited basis and would be primarily used to access remote, helicopter drill locations.

- Drivers would be experienced in fuel truck hauling on NFS roads and would be familiar with the travel routes, including locations of steep slopes that require downshifting (for vehicles with manual transmissions).

- Tire chains would be required on NFS roads for snow or ice road road conditions.
To minimize disruption to the traveling public, no fuel convoys would be permitted into the project area after 9:00 a.m. on Fridays, and no transport on Saturdays or Sundays, unless authorized by USFS.

10.4.1 Additional Fuel Transport Management-related Environmental Commitments

- Overall emphasis on timing of convoy trips would be during snow-free conditions in an effort to limit trips during snow/ice conditions.
- No fuel hauling would be allowed during official U.S. Weather Bureau designated “winter storm warnings,” to be coordinated with Valley County Road Maintenance and USFS.
- Valley County Road Maintenance Supervisor, the Payette National Forest District, and the Nez Perce Tribe (NPT tribal fisheries contact) would be notified 24 hours in advance of the convoy leaving Cascade, Idaho.
- Fuel haul would be during daylight hours and in acceptable weather. “Acceptable weather” will be determined jointly by MGI, USFS, and the Valley County Road Department on a case-by-case basis.
- Prior to the fuel haul, Valley County Road Maintenance would be contacted to ensure that Johnson Creek road is clear.
- There would be no limitation to travel numbers and other restrictions for environmental response and environmental monitoring vehicles.
Table 4. Transportation Mitigation Measure

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Personnel</th>
<th>Special Equipment</th>
<th>Responsibility</th>
</tr>
</thead>
</table>
| 4-wheel drive (WD) pilot truck (1) | One licensed, experienced driver with previous route driving experience or has completed a ride-along orientation trip | Radio to communicate with all convoy vehicles, Pilot Vehicle sign attached to front or top of vehicle, flashing/rotating roof light, properly sized tire chains for all axels with chain tighteners, and additional spill response material | • Set convoy speed
• Watch for oncoming traffic and road hazards (falling rock, etc.)
• Maintains communication with tanker trucks and response vehicle
• Intercept oncoming traffic, as necessary, to notify of convoy presence.
• Travel at least ¼ but no more than 1 mile in advance of convoy |
| Fuel trucks (2 to 4) approximate capacity per truck 4,000 gallons | One licensed, DOT-qualified, experienced driver per truck, provided by fuel contractor with previous route driving experience or has completed a ride-along orientation trip | Radio to communicate with all convoy vehicles and standard fueling and safety equipment | Safe transportation and delivery of fuel from Cascade to Stibnite |
| 4WD emergency response truck (1) with emergency response trailer (1) | Minimum of three 40-hour hazardous waste operation and emergency response (HAZWOPER) trained personnel* | Radio to communicate with all convoy vehicles, spill response materials including sorbent booms, pads, shovels, stakes, satellite phone, first aid kit, eye wash, fire extinguisher, 4000 gallons of emergency fuel storage. | Initial response to spill or other incident.
Stabilize an accident scene, to the extent possible, prior to additional equipment and personnel arriving at site. Emergency response truck will always be positioned downstream of fuel trucks during convoy. |
| 4WD truck (1) | Driver | Radio to communicate with all convoy vehicles, SPOT GPS, weed-free straw, additional spill response material | Primary communication with Midas and site personnel. Update key Midas personnel hourly using SPOTGPS. |

* Three 40 hour Hazmat personnel can be spread throughout the convoy and operating other vehicles. The intent of this requirement is to ensure that there are three 40 Hour Hazardous waste trained personnel on the convoy.

- Drivers would be DOT-licensed and adhere to driver log and driving time restrictions as set by DOT. Helicopter pilots would be licensed and adhere to Federal Aviation Administration requirements as appropriate.
• All fuel transport drivers would be required to have spill response, safety, and resource awareness training. In this program, drivers would be informed of the Idaho State Emergency Medical Service (EMS), first hazardous materials responder actions, and the importance of anadromous fisheries that must be protected. In addition, each driver would participate in a safe-driver training course that is specific for the MGI fuel convoy. The course would cover the SOP as well as discuss causes of accidents and how to minimize risk.
 o Pilot and emergency response vehicles would carry appropriate containment and first aid equipment. Each convoy (between the two vehicles) would carry at least one gallon of dry plug-n-dike; three oil sorbent booms; one bundle of sorbent pads; shovels; 96-inch by 96-inch piece of plastic sheeting; a bucket; a 55-gallon drum; and a small trash pump (or equivalent) and generator.
 o The spill response team would carry sufficient containment equipment for one full tanker. This may include 4,000 gallons of empty storage capacity on standby at Cascade. If necessary a second vehicle carrying additional spill response equipment will be added.
• Documented annual inspections of commercial transport vehicles are required in 49 CFR 396.17-23. Inspections would be conducted by a qualified DOT inspector. Commercial transport vehicles would also be inspected at Landmark by the driver prior to accessing Johnson Creek Road. Transport companies are required to document DOT annual inspections and Landmark vehicle inspections.
• Drivers would be experienced in fuel truck hauling on NFS roads and would be familiar with the travel routes including locations of steep slopes that require downshifting (for vehicles with manual transmissions).
• Tire chains would be required for snow or ice road conditions. The need for chains would be determined by the convoy lead. All trucks would be equipped with properly sized chains for both steering and drive tires.
• Helicopter flights would be discouraged during heavy snow or icy conditions. Helicopters will be temporarily grounded if visibility is poor.
• For non-winter conditions, the Johnson Creek Road route would be used as follows:
 o From City of Cascade: Warm Lake Road (FS 579) for 37 miles to Landmark, then north on Johnson Creek Road (FS 413) for 28 miles to Yellow Pine, and 14 miles on Stibnite Road (FS 412) to the project sites.
• Road clearing and maintenance activities would be coordinated with Valley County as necessary.
• USFS project administrator and Valley County sheriff dispatch would be notified a minimum of 48 hours in advance of the fuel convoy.
• During winter, when Johnson Creek Road is closed, no fuel will be transported to the project site.
• During winter, when Johnson Creek Road is closed the route from Cascade to Yellow Pine and Stibnite using the South Fork Road would be used for non-fuel haul project access as follows:
From the City of Cascade: Warm Lake Road (FS579) for 35 miles to Knox, then north on South Fork Road (FS474/674) for 32 miles to East Fork Road (FS412), 16 miles east on East Fork Road (FS412) to Yellow Pine, and 14 miles on Stibnite Road (FS412) to the project site.

10.5 Soil

- Any soil moving will be completed with hand tools or the smallest dozer needed. Any areas leveled for drill pads and platforms will be re-contoured where ever possible as per IDAPA 20.03.02.060.06(a), after holes are plugged and the platforms are removed.
- Topsoil and any brush removed will be stockpiled separate from fill material and used in reclamation.
- Hand tools or a heli-portable backhoe will be used for sump construction at helicopter supported drill pads.
- To reduce the potential of slope failure associated with saturated sump pits, where practical unlined sumps will be located away from steep slopes and will be in granular soils.
- To minimize sediment runoff from the temporary roads and roadbeds, water bars, silt fencing, certified weed-free waddles, and/or weed-free straw bales will be installed in strategic downslope areas and in RCAs.
- Road rutting from traffic will be minimized by required construction or maintenance of waterbars and by restricting road use when conditions are unacceptable due to moisture; see wet weather vehicle restrictions below.
 - If standard vehicle traffic (4x4 pickup) over a saturated road base causes an excessive amount of sediment to be generated such that the installed BMP’s are no longer effective then vehicle use will be restricted to the next usable class of vehicle (UTV or ATV) and their impacts reassessed.
 - If no vehicle class can be operated, such that it generates sediment in excess of installed BMP’s sediment handling capabilities, then travel in affected areas will be suspended until the situation improves; either by improving BMP’s or if wet weather conditions subside.
 - At no time will vehicle traffic be restricted in such a manner that it will prohibit the safe and environmentally protective suspension of drilling activities until conditions allow for normal activities to resume.
- Drill sites and other reclaimed drill areas will be monitored during spring runoff to ensure that BMPs are in place are working so that soil erosion is minimized.
- Drill pads will be sited to avoid high landslide prone areas.
- For the borrow source, standard reclamation practices will be followed, including segregating and stockpiling topsoil, implementing stormwater and sediment BMPs, backfilling and placing topsoil, and revegetating. The spoil material (materials too fine to use as gravel) produced from the processing of the material from the borrow source will be used either as a soil amendment filler (if suitable) or incorporated into the reclamation of the borrow source.
• Temporary roads will not be located in landslide prone areas.
• Proper BMPs will be used to prevent sediment from escaping sump locations. Activities will include, but are not limited to, the following: Drill pads and sumps will be constructed to minimize erosion. Erosion of the pad fill slopes will be minimized by directing pad surface drainage either to the sump or to a small sediment trap located on a corner of the pad where it meets the existing slope.

• Upon completion of use, prior to expected water runoff, or prior to seasonal shutdown, water management features will be constructed, installed, and/or maintained on authorized temporary roads. Activities and features include, but are not limited to, waterbars, rolling dips, seeding, grading, slump removal, barriers/berms, distribution of slash, and culvert/ditch cleaning.
• With prior USFS approval, roads will be decommissioned to achieve a condition equivalent to or better than the condition that existed prior to authorization of use by implementing some or all of the following activities:
 o Upon project completion, unauthorized public use of the roads will be discouraged by spreading brush and woody debris on the lower 100 feet of roads on NFS lands.
 o Block access using boulders, logs, root wads or other suitable materials.
 o Scarify/rip the route to a depth of up to 18 inches depending on the degree of compaction.
 o Restore cut slopes to the original contour by pulling the fill slope back and providing additional fill as needed to establish a slope contour compatible with adjacent slopes.
 o Following the contouring of the slope, some or all of the subsequent activities will take place on the disturbed area:
 ▪ Distribute minimal slash and large wood material where trees exist by using dead and downed trees adjacent to and within the road in an effort to replicate only the amount of slash found on adjacent forest land.
 ▪ Place herbaceous vegetation mats of adjacent vegetation, using a backhoe to randomly place throughout the disturbed area.
 ▪ Mulch the surface using a noxious weed free straw or other suitable material.
 ▪ Fertilize the scarified surface.
 ▪ Seed with indigenous seed mixture appropriate for the elevation and habitat.

10.5.1 Additional Soil-related Environmental Commitments
• MGI would monitor stormwater runoff and stormwater BMPs as per the SWPPP that falls under the EPA, Region 10 approved MSGP for Industrial Activity (Sector G – Metal Mining for exploration activities).
10.6 Wetland and Riparian Resources

- Drill pads would not be located within wetlands unless on snow cover sufficient to avoid impacts.
- Drill pads would not be located within 100 feet of streams.
- All drill locations proposed in RCAs would be justified by the proponent in terms of geologic and logistical necessity and approved by USFS.
- Prior to siting a drill pad in an RCA, a final review of options to determine whether a safe, feasible alternative exists based on available information at that time would be conducted.
- Limited drilling in RCAs (specifically in the Box, Sizzle and Fiddle prospects) would occur in the winter on frozen snow-pack ground, wherever safely accomplished.
- During any drilling within an RCA, upstream and downstream turbidity monitoring of the local surface water would be conducted. Monitoring will be accomplished using visual observations for sediment generation resulting from drilling operations once during each shift.
- For drill areas in RCAs:
 - Pads will be sited to avoid removing any large trees.
 - Any tree that is felled would be left in the RCA.
 - Silt fencing would be placed around pads and straw bales placed and staked.
 - When applicable, cross drains would be installed within the pad area to ensure drainage away from the RCA and stream.
- In the event MGI proposes to locate a drill pad in in an RCA, the following procedures will be followed:
 - MGI stakes or flags the perimeter of the proposed drill pad and submits a written or email request to the Forest Service Minerals Administrator (MA) explaining why there is no reasonable alternative to siting the pad in an RCA. The request should include a map with the location and GPS coordinates. A minimum of 2 weeks’ notice is required.
 - The MA will review the request along with the district or forest fisheries biologist.
 - If the request is approved, MGI will construct the pad and install appropriate BMPs.
 - MGI will notify the MA when construction is complete.
 - Move-on may not begin until the pad is reviewed and approved by the MA.

10.7 Wildlife

- Buildings, equipment and drill rigs would have limited external lighting and would employ noise-minimizing practices (e.g. mufflers).
• To the extent practicable, trees found to contain nesting cavities would not be disturbed
or cut. No trees with active nests would be cut.
• The USFS wildlife biologist would be notified of any occupied sensitive species nests or
dens encountered during implementation that may be associated with listed or sensitive
species. If necessary to maintain key features of nesting/denning habitat or to avoid
disruption of nesting/denning activities, prescribed activities would be modified.
• Personnel and contractors traveling in vehicles would observe posted speed limits or state
secondary road speed limits and to drive at speeds appropriate to reduce the possibility of
vehicle-wildlife accidents.
• Any adverse wildlife encounters would be reported to appropriate state and federal
wildlife managers.
• Mud sumps used for drilling operations would have perimeter fencing to keep wildlife
from accidentally falling into the excavation.
• Sightings of listed or sensitive wildlife species would be reported to USFS.
• Cutting of trees for Proposed Action activities and removal of snags would avoid avian
tree nests, where feasible.
• Drill areas potentially worked during the raptor nesting and fledging season would be
surveyed for those threatened, endangered, and sensitive raptor species identified in the
Golden Meadows Exploration Project EA September, 2015, Table 2-6 and identified
raptor nests would be buffered at a distance of 1,500 feet and no project activity would
occur in this buffer until fledglings have left the nest.
 o **Northern Goshawk:** Restrict activities within a 30 acre (average 650 foot radius)
area surrounding an active goshawk nest tree to avoid disturbance and retain
vegetative structure around the nest site (Reynolds et al 1992). In addition, no
drill pad construction, drilling operations, helicopter flights or roadwork activities
would occur within a 1,500-foot buffer (Jones 1979) around active goshawk nest
tree(s) from April 1 to August 15 to avoid disrupting nesting activities. Exact
distance for which restrictions apply would be determined by a wildlife biologist
based upon topography and vegetative screening on a site-specific basis. Timing
restrictions would only be required for active nest sites*. Because goshawks
commonly move to alternate nest sites would be re-identified annually.
 o **Great Gray Owl:** Restrict activities between March 1 and August 1 occurring up
to 1,500 from nest site* to avoid disrupting nesting activities. Exact distance for
which restrictions apply would be determined by wildlife biologist based upon
topography and vegetation screening on a site-specific basis. Maintain a 150-foot
no-activity buffer around identified active nests to maintain site-level
microhabitat conditions.
 o **Boreal Owl:** Restrict activities between March 1 and July 15 occurring up to
1,500 from nest site* to avoid disrupting nesting activities. Exact distance for
which restrictions apply would be determined by wildlife biologist based upon
topography and vegetation screening on a site-specific basis. Maintain a 150-foot
no-activity buffer around identified active nests to maintain site-level
microhabitat conditions
* Timing restrictions would not restrict planned road use patterns, public access or fuel hauling

- If necessary to maintain key features of nesting/denning habitat or to avoid disruption of nesting/denning activities, prescribed activities would be modified in coordination with USFS.
- If fawning/calving activity is encountered during drilling activities, activity would cease and/or be modified in coordination with USFS.
- Potential drill pad sites adjacent to any open shafts or natural caves should be observed for the presence of bats. If necessary to maintain key features of habitat or to avoid disruption, activities would be modified in coordination with USFS.

10.8 Aquatics

- Employees and staff will receive training and direction to avoid harassment of spawning adult Chinook salmon, bull trout and steelhead.

- For drilling activities during winter, the following SOPs would be followed:
 - On NFS lands, travel and drilling operations off designated routes would only occur when there is adequate snow depth or frozen soil to prevent rutting and puddling.
 - Fish-bearing streams would be crossed via existing roads and bridges only.
 - When crossing non-fish bearing stream channels to access drilling pads on NFS lands, snow or ice bridges would be constructed where necessary to prevent damage to streambanks. Snow fill used to construct bridges would be clean of soil and other debris.
 - On NFS lands, clearing of vegetation for drilling operations in RCAs, or construction of snow bridges, would require USFS approval prior to conducting the activity.

- If USFS administration of this project identifies unanticipated impacts to fish or fish habitat, the surface activity would be suspended by the Krassel District Ranger until corrections can be made and the Level 1 Team would be informed or consultation would be reinitiated.

- If there is any increase in the surface water withdrawal amount and rate described in Table 5, consultation would be reinitiated.

<table>
<thead>
<tr>
<th>Source</th>
<th>Approved Diversion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow Pine pit (EFSSR)</td>
<td>0.33 cfs</td>
</tr>
<tr>
<td>Fiddle Creek</td>
<td>0.04 cfs</td>
</tr>
<tr>
<td>Hennessy Creek</td>
<td>10% of the flow</td>
</tr>
<tr>
<td>Sugar Creek</td>
<td>0.04 cfs</td>
</tr>
<tr>
<td>West End Creek</td>
<td>10% of the flow</td>
</tr>
<tr>
<td>Midnight Creek</td>
<td>0.04 cfs</td>
</tr>
</tbody>
</table>

cfs = cubic feet per second
• The diversion rate would not exceed 10 percent of the total creek flow for the source stream.

• If additional surface water rights are applied for, USFS would be informed to determine if additional analysis or consultations is necessary prior to use.

• Dust abatement chemicals would be used in accordance with applicable road maintenance biological assessment/biological opinion (BA/BO) prepared for the Forest including no use of chemicals within 25 feet of surface water.

• Apply dust-abatement additives and stabilization chemicals (typically MgCl₂ or CaCl₂ salts) so as to avoid run-off of applied dust abatement solutions to streams. Spill containment equipment would be available during chemical dust abatement application.

• For those drill pads within RCAs of stream channels, visual turbidity monitoring would occur immediately upstream and downstream of active drilling operations. An annual report would be provided to the Level 1 Team that documents the results of visual observations. If operations are shown to be generating visible turbidity in a stream channel downstream of drilling, that is greater than upstream levels, operations would cease until the source of sediment can be identified and mitigated. While actions are taken to stop the turbidity plume, the visual observations of upstream and downstream turbidity would be measured with a turbidity meter at 15 minute intervals until the downstream plume subsides. If a turbidity plume occurs due to drilling, the Level 1 Team will be promptly provided with a report that includes an account of the event, measures taken to stop the plume, and turbidity data. NOAA FISHERIES

• Reclamation of drill pads and sumps would occur following use to minimize potential for erosion or sediment release.

• Drilling operations would not occur at the South Sugar drilling area until USFS approves the specific location for the drill pad and a USFS journey level fisheries biologist agrees that effects are consistent with the BA determinations.

• In addition to decommissioning activities described elsewhere, consultation with the U.S. Fish and Wildlife Service (USFWS) and National Oceanic and Atmospheric Administration (NOAA) fishery resulted in the following mandatory measures on each temporary road: Unless a request was made to reauthorize road use, all temporary roads on Federal System lands would be decommissioned immediately after use to a condition better than or equal to (e.g., a previously reclaimed roadbed) that prior to use. Decommissioning would include:
 o Reestablishing former drainage patterns, stabilizing slopes, and restoring vegetation.
 o Reestablishing drainage, removing unstable fills, pulling back road shoulders, and scattering slash on the roadbed.
 o Completely eliminating the roadbed by restoring natural contours and slopes.

• The operator would immediately report any fuel, oil, or chemical discharges or spills greater than 25 gallons on land, or any spill directly in a stream to IDEQ, USFS, USFWS, and NMFS as required by applicable federal and state regulations by phone and/or fax (or
as soon as possible after on-site containment efforts are implemented as per the SPCC plan), and initiate emergency consultation.

- Concurrent reclamation would be conducted where possible and practical to offset potential erosion or sediment release.
- Annually, Midas will report Fuel Consumption, Haul times, and any incidents reported to the USFS.

10.8.1 Additional Aquatics-related Environmental Commitments

This work is not associated with the Proposed Action, but is required maintenance that is needed for safety and access to the site.

- Road maintenance would be conducted along Stibnite Road accessing the project site from Yellow Pine. Under a cooperative agreement with Valley County, maintenance measures would be performed to repair segments that have deteriorated over time. These measures would include cleaning roadside ditches and improving drainage, reducing potential rock fall, improving and regrading roadway surfaces, replacing soft roadway materials, and adding surface coat aggregate with appropriate gradation and durability characteristics followed by application of dust abatement and binding products to the road bed surface in selected areas.

- GRAIP modeled sediment delivery points with greater than 0.1 tons per year would be followed up with field validation and would be used to prioritize application of surface aggregate. With field validation to access current need, road segments identified for graveling in the 1995 Biological Opinion RPAs that remain unsurfaced would also receive high priority for surface aggregate. These areas include Tamarack Creek, Mile Marker 8, and “Lake Louise”. Treatment will occur during the first summer of project implementation.

- For drilling activities during winter, the following SOPs would be followed:
 - To provide protection to the EFSFSR, snow removal for Stibnite Road would be accomplished in accordance with the following standards of performance:
 - Except snow and ice, all debris that is removed from the road surface and ditches would be deposited away from stream channels at approved locations.
 - During snow removal operations, banks would not be undercut and gravel or other surfacing material would not be bladed off the roadway surface.
 - Ditches and culverts will be kept functioning during and following plowing. Berms left on the shoulder of the road would be removed and/or drainage openings would be created and maintained. Drainage openings would be spaced to maintain satisfactory surface drainage without discharge on erodible fills.
 - Dozers would be used on an as-needed basis for plowing snow. The dozer operator would maintain an adequate snow floor over the gravel road surface.
 - Snow must not be totally removed to the gravel road surface. Appropriate snow floor depth would be maintained to protect the roadway.
• Damage of roads from, or as a result of snow removal would be repaired in a timely manner.
• Culverts and stream crossings would be clearly marked before snow removal begins to avoid placing berm openings in locations that would allow runoff to enter drainages directly at the culverts or stream crossings. Excessive snow would not be plowed into locations that would impact operation of the culverts or prevent positive drainage from drainage areas. Some snow is necessary around culvert openings and in the bar ditches as this would insulate the ditch and culvert and would prevent the water in the ditch and culvert from freezing.
• No chemicals would be used on roads.
• Traction material would be 3/8-inch diameter gravel or greater.

10.9 Fire Safety & Emergency Response

Fire safety and emergency response procedures are required as per IDAPA 20.04.01 and 36 CFR 228.9. The following procedures would be implemented for the project:

• Equipment that could potentially come into contact with dry vegetation would be required to have functional spark arrestors. In addition, drill pads would be equipped with fire suppression equipment including shovels, axes, and fire extinguishers.
• An emergency fire response plan, including emergency notification contacts would be posted on site and staff would be trained in emergency response procedures.
• If any burning of debris, slash or other biodegradable materials is required, a Valley County Burn Permit would be obtained. Any burning would be conducted in accordance with applicable state and local regulations. There are currently no plans to conduct any burning as part of the project.
• All activities would be conducted in accordance with State of Idaho fire protection procedures (as outlined in IDAPA 20.04.01), local Valley County Fire District regulations, and USFS rules and regulations and 36 CFR 228.11.
• Several fire-response kits would be spaced strategically around the project area and at the camp in case of fire.
• On-site staff would monitor local and on site fire conditions and maintain contact with local area fire officials to ensure appropriate fire management procedures are followed in the event of implementation of fire restrictions or woodland use restrictions (e.g., “Red Flag Warnings”).

10.10 Vegetation

• To minimize the risk of noxious weed infestations or spread of weed seeds, equipment will be inspected and cleaned prior to mobilizing onto the Forest. All access routes, platforms, locations and sump construction sites would also be inspected prior to project-related activities and if they are found to be weed-infested, then the weed infestation would be treated by manually removing infestations using hand tools prior to ground disturbing activity. Any pulled weeds would be burned in a secure site (with a burn
permit) or bagged and removed and disposed of as per County Extension Service recommendations.

- Prior to commencing drilling activities, exploration sites would be surveyed for noxious weeds. Herbicides would be used to control the infestation in accordance with USFS’s 2007 *South Fork Salmon River Sub Basin Noxious and Invasive Weed Management Program*. Infestations near streams would be controlled by hand pulling.

- A noxious weed plan has been created for the project area (ESOP-023 Weed Management Plan) that identifies noxious weeds for reference by staff. Staff would also receive training to identify noxious weeds in the area.

- When exploration starts in the Doris K and Saddle areas with known populations of bentflowered milkvetch, the USFS botanist will be notified so avoidance and mitigation can be monitored.

- Monitoring of disturbed sites with known bentflowered milkvetch populations or habitat for this species would be done to determine if restoration and replanting is successful.

- Removal or heavy trimming/pruning of whitebark pine would be avoided.

- If surveys or tracking of noxious weeds and/or rare plants occurs, this information would follow USFS protocol and be submitted to the USFS botanist.

- During exploration activities, a botanist trained at recognizing bentflowered milkvetch (*Astragalus vexilliflexus var. vexilliflexus*) would survey the drill areas. Whenever possible, all ground disturbances to individual plants would be avoided. If the activity cannot avoid bentflowered milkvetch, the plant would be dug up and set aside with the topsoil until it can be used in reclamation. Avoid the casual trampling of bentflowered milkvetch. The plants would be replaced at their original site if possible before the end of the field season or as soon as possible to avoid desiccation. In drill areas where this plant is documented or there is potential habitat for it, no seeding or mulching would be conducted and duff would be raked onto the disturbed area with minimal application of large woody material.

- During any planned activities, should any other threatened, endangered, sensitive, proposed, and candidate (TESPC) plant species be observed in the project area, the Forest botanist would be notified and the potential impacts evaluated.

- Reclamation seeding would be done with indigenous seed mixtures appropriate for the elevation and habitat. Prior to installation, types, locations, and amounts of seed would be approved by USFS.
 - The Saddle and Doris K drill areas contain habitat for bentflowered milkvetch. No seeding or mulching would be conducted at these two sites. The soil would be scarified.

10.11 Transportation and Public Safety

- All NFS, county and state speed limits, road restrictions and load limits would be observed during travel. If appropriate, during equipment mobilization and demobilization, pilot cars would be used to ensure there are no conflicts or incidents along the narrow access roads leading into the project area.
A professional avalanche forecaster will be used to assess (predict) avalanche danger to personnel traveling on access roads and working at drill sites. Areas of high avalanche danger would be avoided. If control becomes necessary on private lands to reduce avalanche risk to humans and property, then an expert with appropriate certifications in avalanche control (use of hand charges from helicopters) would be used. Control activities would be conducted in accordance with National Ski Areas Association explosive guidelines, Avalanche Artillery Users of North America Committee guidelines, and in accordance with applicable federal, state, and local regulations. Prior to implementing control measures on NFS lands, a SOP will be presented to USFS for approval under applicable USFS regulation. Control materials would be stored on private land and in accordance with applicable federal, state, and local regulations.

MGI would coordinate with USFS on current and planned air operations.

10.11.1 Additional Transportation and Public Safety-related Environmental Commitments

- To minimize risks to the public, and to comply with Occupational Safety and Health Administration (OSHA) regulations in accordance with 36 CFR 228.9, appropriate signs would be posted near the drilling area to inform and warn visitors as appropriate. Signs would include, but are not limited to warning signs requiring use of hardhats, ear protection, eye protection, and foot protection near the drill rig and ancillary equipment.

- A site-wide health and safety plan would be developed and provided to USFS.

- As part of the Health and Safety Plan, medical, fire, and weather emergency response procedures would be developed, and all employees and contractors would be familiar with these procedures.

- Appropriate signs would be posted near the drilling area to minimize risks to members of the public, and to comply with OSHA regulations in accordance with 36 CFR 228.9.

10.12 Recreation

- Existing authorized, open NFS roads in the project area would remain open during normal operations.
- Thunder Mountain Road (FS 375) would remain open during normal operations.
- Foot or horseback travel through the project area would be possible during normal project operations, although recreationists would need to avoid active exploration activities for safety reasons.
- Big-game hunting on NFS land open to hunters in accordance with Idaho and federal regulations in the project area would be possible during normal operations.

10.13 Visual Resources

- Biodegradable flagging would be used and unneeded survey flagging will be removed upon cessation of drilling activities.
- Pads on temporary roads would be reclaimed after drilling is completed.
- Whisper Quiet light plants would be used to mitigate visual impacts from night exploration operations.
- Light shields would be placed over outside lights, confining light to the immediate area in order to further limit visual impacts.

10.14 Cultural Resources

- If previously undiscovered cultural resources (historic or prehistoric objects, artifacts, or sites) are exposed on NFS land as a result of project operations, those operations would not proceed until notification is received from USFS that the proponent has complied with provisions for mitigating unforeseen impacts as required by 36 CFR 228.4(e) and 36 CFR 800.

10.15 Monitoring of Proposed Action BMPs and Reclamation

BMPs presented above have been demonstrated to be effective in reducing erosion and sediment transport (Burroughs and King 1989). As part of project SOPs, drill sites and other reclaimed areas will be monitored to ensure that BMPs are in place and working so that soil erosion and other potential resource impacts are avoided or minimized. An example BMP that has been used at the project site is shown in Photo 1. Specific monitoring measures associated with the Proposed Action are outlined under project SOPs and in Section 11.0. Site inspections and inspection reports are completed that are consistent with U.S. Environmental Protection Agency (USEPA) guidance, but customized to specific conditions found at the site. Site inspections and monitoring of reclamation activities provide direction on the success of actions that have been taken, corrective actions needed, and the timeframes that recommendations are made.

Reclamation that has been conducted is tracked and documented and is provided to USFS through annual reclamation statements. Reclamation statements have been submitted for approved activities conducted in 2009 through 2015. These statements outline specific BMPs that are being applied during and after project-related operations.
11.0 LONG TERM WATER QUALITY MONITORING PLAN

Surface and groundwater samples will be collected by environmental scientists contracted by MGI. Samples will be collected 4 times per year during the life of the project and for a minimum of one year after project completion. If water quality declines substantially, monitoring will continue for up to three years.

Water samples will be collected at each of the 11 sites. The four samples will consist of: 1) a sample stabilized by HNO₃, 2) a sample stabilized by H₂SO₄, 3) an unfiltered sample, and 4) a sample filtered through a 0.45 disposable micron filter using a peristaltic pump. Within 24 hours of collection, all Samples, including an inserted deionized H₂O blank, will be refrigerated and transported to an approved laboratory for analysis. Analysis of the water samples will include measurements for the following parameters: pH, Total Dissolved Solids, Total Suspended Solids, Hardness (CaCO₃), conductivity, and the elements Ag, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Sb, Se, Ti, Zn, and the compound SO₄.

After analysis results are received, the data will be posted on the project website accessed via the Payette National Forest (USFS) public web page. Should monitoring suggest a “substantial increase” in one or more of the parameters over a period of three consecutive months, the USFS may require MGI to investigate possible causes for the negative change in water quality. A “substantial increase” is defined as: a change in concentration measured as one standard deviation above the “mean,” with the exception of pH. A substantial change in pH is defined as one standard deviation from the “mean.”

The “mean,” referred to in the above paragraph, shall have the meaning of the average of the baseline data collected at each site divided by the number of readings. The “standard deviation” described in the paragraph above shall have the meaning of the dispersion of a set of data from the “mean” and is calculated as the square root of the variance.

First Action – The laboratory that conducted the initial analysis of the water sample will be contacted and asked to re-analyze the parameter or parameters in question with a 48-hour turn-around when possible. If re-analysis indicates the sample does not show a substantial increase, no further response will be required. The USFS will be supplied with both laboratory reports confirming that the initial analysis was an anomalous report. If the value is verified in the re-analysis, an agency agreed-upon action response strategy shall be implemented.

Second Action – At the sample site in question, MGI will effect a resampling of the site in question and submit for testing as soon as practical, but within holding times for preserved samples. If re-sampling indicates no substantial increase for the parameter(s) in question no further response will be required. The USFS will be supplied with all the laboratory reports confirming that the results of the initial sample were an anomalous report. If re-sampling indicates there is a substantial increase in the parameter(s) in question, an agency agreed-upon action response strategy shall be implemented.

MGI will investigate increases in water quality parameters, notifying the USFS within 48 hours of receipt of analytical results, and provide the USFS a written report within 30 days of confirmation of an issue based on the sampling protocol above. Within 30 additional days, MGI will confer with the USFS and other agencies to develop monitoring and best management plans consistent with Idaho rules to address the source of contamination. BMPs will be implemented for any sample result displaying values two standard deviations or more from background mean...
concentrations established by MGIs’ multi-year baseline study. If the parameter(s) in question are surface water related, IDEQ would be notified to work with MGI to avoid exceedance of State of Idaho Water Quality Criteria.

Table 6 Exploration Surface Water Monitoring Sites

<table>
<thead>
<tr>
<th>Site_Name</th>
<th>Site Type</th>
<th>Site Description</th>
<th>Easting (UTM)</th>
<th>Northing (UTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP-SR-6</td>
<td>Surface Water</td>
<td>EFSFSR above Yellow Pine Pit</td>
<td>631416</td>
<td>4976000</td>
</tr>
<tr>
<td>YP-SR-10</td>
<td>Surface Water</td>
<td>EFSFSR below Meadow Creek</td>
<td>631931</td>
<td>4973626</td>
</tr>
<tr>
<td>YP-T-6</td>
<td>Surface Water</td>
<td>Lower West End Creek</td>
<td>632146</td>
<td>4977435</td>
</tr>
<tr>
<td>YP-T-21</td>
<td>Surface Water</td>
<td>Rabbit Creek</td>
<td>633402</td>
<td>4972682</td>
</tr>
<tr>
<td>YP-T-35</td>
<td>Surface Water</td>
<td>Garnet Creek</td>
<td>632085</td>
<td>4973820</td>
</tr>
<tr>
<td>YP-T-21</td>
<td>Surface Water</td>
<td>Upper West End Creek</td>
<td>633402</td>
<td>4972682</td>
</tr>
<tr>
<td>GM-GC-56</td>
<td>Seep</td>
<td>Lower Garnet Creek seep</td>
<td>632300</td>
<td>4974562</td>
</tr>
<tr>
<td>GM-MN-192</td>
<td>Seep</td>
<td>Midnight Creek seep</td>
<td>632936</td>
<td>4975985</td>
</tr>
<tr>
<td>GM-RC-220</td>
<td>Seep</td>
<td>West Rabbit Creek seep</td>
<td>633875</td>
<td>4973456</td>
</tr>
<tr>
<td>YP-S-3</td>
<td>Seep</td>
<td>Garnet Pit seep</td>
<td>632771</td>
<td>4973940</td>
</tr>
<tr>
<td>YP-T-17</td>
<td>Seep</td>
<td>DMEA wasterock seep</td>
<td>631644</td>
<td>4974141</td>
</tr>
</tbody>
</table>
Golden Meadows Exploration Project - Revised Plan of Operations for 3-Year Exploration Drilling Program

Figure 4. Exploration Monitoring

Legend:
- ▲ Exploration Seep Flow Monitoring
- ● Exploration Surface Water Monitoring
- □ Exploration Monitoring Zones
- □ EA Permitted Drill Areas
- □ Midas Gold Inc.
- □ Cinnabar Claim Group

Sources: Esri, HERE, DeLorme, Intermap, increment, i-corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong) © 2016 OpenStreetMap contributors, and the GIS User Community

Exploration Monitoring

Midas Gold Idaho Inc
405 S. 6th Street #201
Boise, ID 83702

March 14, 2016
12.0 RECLAMATION PLAN

MGI will remove all drilling-related structures, trash, debris, equipment, and other related materials from each drill site once drilling is completed. Photographs will be taken of all drill areas prior to activities, during operations and after operations to provide to PAF District Ranger and IDL for record keeping at the end of the project.

12.1 Drill Pad Reclamation

Upon completion of each core hole, the hole will be promptly abandoned as required by the Idaho Rules Governing Exploration, Surface Mining, and Closure of Cyanidation Facilities (IDAPA 20.03.02) after reaching their total planned depth. Borehole abandonment would generally take place within hours of borehole completion to avoid the need to bring the drilling rig back to the site later. If the annular space of the casing has been sealed with cement (as is the case with boreholes expected to encounter artesian conditions), the casing is left in place. If the annular seal is bentonite, the temporary surface casing is removed before abandonment. Borehole abandonment entails plugging the holes from bottom to top with a low-permeability bentonite-based grout (Benseal®), which seals off all water transmission. In order to ensure a continuous seal throughout the hole, the grout would be pumped down the hollow drill string starting at the bottom of the hole. As the hole is filled the drill string would be withdrawn, but never pulled above the surface of the ascending column of grout, as this could produce voids. After the grout has risen to within approximately 3 feet of the ground surface and has set up, the remainder of the hole would be plugged with cement. In the case of abandonment of a flowing artesian drill hole, neat cement grout would be used to seal the entire borehole instead of bentonite grout. Any remaining cuttings will be backfilled into the sump excavation so that growth of natural grasses and foliage will not be impaired. The mud pits will be backfilled and re-contoured as per IDAPA 20.03.02.060.06(b). Sites will be mulched by application of certified weed-free hay mulch. Sites will be re-planted, where possible and practical, with certified weed-free seed mixes and native plant species for each site’s elevation, moisture and climatic setting as per IDAPA 20.03.02.060.06 (a) and (b) and in accordance with 36 CFR 228.10 and as approved by the PAF.

12.2 Temporary Road Reclamation

Twenty-two of the 24 proposed drilling sites will be setup and accessed by helicopter (access may also be by foot or snowcat when sufficient snowpack is present). North Stibnite involves temporary road construction. After use, the road will be closed by re-contouring to blend with the existing topography and placement of saved top soil. The site will be mulched by application of certified weed-free hay mulch. Sites will be re-planted, where possible and practical, with certified weed-free seed mixes and native plant species for each site’s elevation, moisture and climatic setting as per IDAPA 20.03.02.060.06 (a) and (b) and in accordance with 36 CFR 228.10. These activities will occur immediately after final use.

All existing roads used for the duration of the POO will be maintained to their current, or better condition during use. Maintenance will be completed with hand tools (shovels and rakes and brush axes), or the smallest mechanical equipment possible, and consist of water-bar stabilization, installation of weed-free waddles and weed-free hay bales for sediment control. Example of reclamation activities being conducted by MGI for previous exploration drilling activities is presented in Attachment D.
12.3 Reclamation in Areas with Bentflowered Milkvetch

During exploration activities, within Saddle and Doris K drill areas, MGI will use a botanist trained at recognizing bentflowered milkvetch (*Astragalus vexilliflexus var. vexilliflexus*) during drill sighting. Whenever possible, all ground disturbances to individual plants will be avoided. If the activity cannot avoid bentflowered milkvetch, the plant will be dug up and set aside with the topsoil until it can be used in reclamation. The plants will be replaced to their original site if possible before the end of the field season or as soon as possible to avoid desiccation.

In association with a local nursery, Buffalo-Berry Farms in McCall, Idaho, MGI located and assisted in the collection of approximately 400 viable seeds of this plant identified as sensitive by USFS. In 2011, after locating the probable and known locations of the plant on a topographic map, the collection team was flown to the collection area by helicopter, and the plant was located. Seeds were collected and transported back to the nursery for sorting and preparation. The nursery will attempt to germinate the seeds in a greenhouse in winter 2011/2012. If successful, this will be the first time that this species has been successfully propagated by seed collection and germination in this manner. The plants will be planted as part of the reclamation/revegetation process to support this POO.

12.4 General Reclamation Practices and On-Going Activities

Site reclamation generally includes re-contouring the disturbance to closely match the pre-existing contours of the location, spreading mulch, straw, wood straw and topsoil over the area, spreading a native seed mix including grasses and legumes, planting lodge pole pine seedlings, and installing stabilization and sediment control structures where necessary.
13.0 RECLAMATION PERFORMANCE BOND

MGI understands a Reclamation Performance Bond may be required by Idaho (IDAPA 20.03.02.01.120) and/or USFS (36 CFR 228.13) to cover reclamation of all disturbances connected with proposed drilling operations.

A performance bond is a performance guarantee to ensure activities are conducted in accordance with the terms and conditions described in this document with the reclamation requirements agreed upon in this IDL notice of intent (NOI)/USFS POO. This performance bond also extends to and includes any unauthorized activities conducted in connection with this operation. The bond amount is based on a calculation worksheet that is attached to and incorporated to this document by reference (Attachment G). The bond amount may be adjusted during the term of this proposed POO in response to changes in the operations or to changes in the economy.

A bond has been negotiated as part of the plan review process. MGI has provided financial assurance (Attachment G).
13.0 OPERATING PLAN ACCEPTANCE

We have reviewed and agree to comply with all conditions in this plan of operations including the required changes, modifications, special mitigation, and reclamation requirements and agree to comply with other applicable federal, state or local laws, rules, and regulations. We understand that any bond required must be posted prior to implementation of ground disturbing activities and that the bond will not be released until the authorized officer in charge gives written approval. We understand that approval of this plan does not constitute certification of ownership to any person named herein and/or recognition of the validity of any mining claim named herein.

Authorized Representative

Operating Plan Approval

(Name) (Title)

(Authorized Officer) (Date)

(mm/dd/yy)
Attachment A

PROPOSED DRILLING SITE MAPS
NORTH STIBNITE
7 DDH's on 4 pads with 4 sumps
Track mounted LF-70's
Temporary road reconstruction

Proposed Drilling Area Location - NORTH STIBNITE
Midas Gold Inc., Golden Meadows
Revised 3-Year Exploration Drilling Program

Legend
- Proposed 3-Year Exploration Drilling Program Area
- Potential Drill Area on Old Road Bed
- Existing Road/Road Bed Outside of Drilling Areas
- New Road Construction on Old Road Bed
- Can Potentially Be Used as Drilling Area
- Re-open Old Road Bed
- To be Used as Potential Drilling Area
- Access Road to Drilling Area
- Private Land
- 2 Meter Contour Line
- 10 Meter Contour Line

Abbreviations:
DDH = Diamond Drill Hole
LF-70 is a Diamond Core Drill Rig
NORTH STIBNITE
7 DDH's on 4 pads with 4 sumps
Track-mounted LF-70's
Temporary road reconstruction

Legend
- Proposed 3-Year Exploration Drilling Program Area
- Potential Drill Area on Old Road Bed
- Existing Road/Road Bed Outside of Drilling Areas
- New Road Construction on Old Road Bed
 - Can Potentially Be Used as Drilling Area
- Re-open Old Road Bed
 - To be Used as Potential Drilling Area
- Access Road to Drilling Area
- Private Land

Abbreviations:
DDH = Diamond Drill Hole
LF-70 is a Diamond Core Drill Rig

Proposed Drilling Area Location - NORTH STIBNITE
Midas Gold Inc., Golden Meadows
Revised 3-Year Exploration Drilling Program
NORTH STIBNITE
7 DDH's on 4 pads with 4 sumps
Track mounted LF-70's
Temporary road reconstruction

Proposed Drilling Area Location - NORTH STIBNITE
Midas Gold Inc., Golden Meadows
Revised 3-Year Exploration Drilling Program

Legend

- Proposed 3-Year Exploration Drilling Program Area
- Potential Drill Area on Old Road Bed
- Existing Road/Road Bed Outside of Drilling Areas
- New Road Construction on Old Road Bed
- Can Potentially Be Used as Drilling Area
- Re-open Old Road Bed
- To be Used as Potential Drilling Area
- Access Road to Drilling Area
- Private Land

Abbreviations:
DDH = Diamond Drill Hole
LF-70 is a Diamond Core Drill Rig

Average Slope (degrees)
- 50
- 30
- 0

Topography: From LiDAR/Imagery flight, Flown June, 2009; C.I. = 2m; Imagery Resolution = 1/3 m
Source: Midas Gold
Other Data Sources: Bureau of Land Management (BLM), US Census Bureau, Payette National Forest
Map Date: October, 2013
NAD83, UTM 11N, Horizontal and Vertical Units are Meters, North is UTM Grid North
Proposed Drilling Area Location - HUCKLEBERRY
Midas Gold Inc., Golden Meadows
Revised 3-Year Exploration Drilling Program

Legend

- Proposed 3-Year Exploration Drilling Program Area
- Potential Drill Area on Old Road Bed
- Existing Road/Road Bed Outside of Drilling Areas
- Private Land
- 2 Meter Contour Line
- 10 Meter Contour Line

Abbreviations:
DDH = Diamond Drill Hole
LF-70 is a Diamond Core Drill Rig

Topography: From LiDAR/Imagery flight, flown June, 2009. C.I. = 2m; Imagery Resolution = 1/3m.
Source: Midas Gold
Other Data Sources: Bureau of Land Management (BLM; US Census Bureau; Payette National Forest)

Map Date: October, 2013
NAD83, UTM 11N, Horizontal and Vertical Units are Meters, North is UTM Grid North.

HUCKLEBERRY
5 DDH's on 5 pads with 5 sumps
Helicopter-supported LF-70’s
On existing/old road beds

Township 18 North
Range 09 East
Section 2
HUCKLEBERRY
5 DDH's on 5 pads with 5 sumps
Helicopter-supported LF-70's
On existing/old road beds

Township 18 North
Range 09 East
Section 2

Legend
- Proposed 3-Year Exploration Drilling Program Area
- Potential Drill Area on Old Road Bed
- Existing Road/Road Bed Outside of Drilling Areas
- Private Land

Abbreviations:
DDH = Diamond Drill Hole
LF-70 is a Diamond Core Drill Rig

Proposed Drilling Area Location - HUCKLEBERRY
Midas Gold Inc., Golden Meadows
Revised 3-Year Exploration Drilling Program

Map Date: October, 2013
NAD83, UTM 11N, Horizontal and Vertical Units are Meters, North is UTM Grid North
HUCKLEBERRY
5 DDH's on 5 pads with 5 sumps
Helicopter-supported LF-70's
On existing/old road beds

Proposed 3-Year Exploration Drilling Program Area
Potential Drill Area on Old Road Bed
Existing Road/Road Bed Outside of Drilling Areas
Private Land

Abbreviations:
DDH = Diamond Drill Hole
LF-70 is a Diamond Core Drill Rig

Average Slope (degrees)

0 30 60
0 100 200
Meters
Feet

Topography: From LiDAR/Imagery flight, Flown June, 2009; C.I. = 2m, Imagery Resolution = 1/3 m
Source: Midas Gold
Other Data Sources: Bureau of Land Management (BLM; US Census Bureau; Payette National Forest
EAST STIBNITE

10 DDH's on 5 pads with 5 sumps
Helicopter-supported LF-70's
On existing/old road beds