Response to Opposing Viewpoints
Opposing views in Mr. Artley’s Attachment 1

Viewpoints not discussed in this document were deemed by the Forest Service to be either outside the scope of the project or conjecture.

Timber Harvest Opposing View #1

The following document contains pertinent color pictures showing logging damage, thus the article text is not shown here. Please use the link below to access the article.

Al-jabber, Jabber M. “Habitat Fragmentation:: Effects and Implications” Clearcuts and forest fragmentation, Willamette NF, Oregon. From: Cascadia Wildland Project, Spring 2003

Response: This paper gives a brief overarching description of fragmentation and how such dynamics could possibly influence general suites of species. The Beasley Pond project includes the removal of timber for the excavation of a burrow pit. Impacts of fragmentation of habitat for Threatened, Endangered and Sensitive Species is discussed in the Biological Assessment and Biological Opinion.

Timber Harvest Opposing View #16

“*In April 1999, the General Accounting Office issued a report that raised serious questions about the use of timber sales as a tool of fire management. It noted that "most of the trees that need to be removed to reduce accumulated fuels are small in diameter" -- the very trees that have 'little or no commercial value.' “

“As it offers timber for sale to loggers, the Forest Service tends to ‘focus on areas with high-value commercial timber rather than on areas with high fire hazards,’ the report said. Its sales include ‘more large, commercially valuable trees’ than are necessary to reduce the so-called accumulated fuels (in other words, the trees that are most likely to burn in a forest fire).”

“The truth is that timber sales are causing catastrophic wildfires on national forests, not alleviating them. The Sierra Nevada Ecosystem Project Report, issued in 1996 by the federal government, found that ‘timber harvest, through its effects on forest structure, local microclimate and fuel accumulation, has increased fire severity more than any other recent human activity.’ The reason goes back to the same conflict that the G.A.O. found: loggers want the big trees, not the little ones that act as fuel in forest fires.”

“After a ‘thinning’ timber sale, a forest has far fewer of the large trees, which are naturally fire-resistant because of their thick bark; indeed, many of these trees are centuries old and have already survived many fires. Without them, there is less shade. The forest is drier and hotter, making the remaining, smaller trees more susceptible to burning. After logging, forests also have accumulations of flammable debris known as "slash piles" -- unsalable branches and limbs left by logging crews.”

Hanson, Chad Ph.D., “*Commercial Logging Doesn’t Prevent Catastrophic Fires, It Causes Them.*” Published in the New York Times, May 19, 2000
Response: The Beasley Pond project does not look to substitute the use of timber sales as fire management tools. Compartments 25, 26, 27, and 28 are included in the Apalachicola’s forest wide prescribed burn regime. Please refer to the air quality section for information on the burn history of the analysis area.

Timber Harvest Opposing View #29

“More than any other recent human activity, the legacy of commercial timber extraction has made public forests more flammable and less resilient to fire. Firstly, clearcut and high-grade logging have historically taken the largest, most fire-resilient, most commercially-valuable trees, and left behind dead needles and limbs (logging debris called "slash"), along with smaller trees and brush that are less commercially valuable but more flammable than mature and old-growth trees. The net effect is to increase the amount of available hazardous fuel.”

“Secondly, the removal of large overstory trees also changes the microclimate of logged sites, making them hotter, drier, and windier, which increases the intensity and rate of spread of wildfires. Third, the creation of densely-stocked even-aged plantations of young conifers made sites even more flammable since this produced a solid mass of highly combustible conifer needles within easy reach of surface flames. These changes in the fuel load, fuel profile, and microclimate make logged sites more prone to high-intensity and high-severity wildfires.”

Response: Existing forest composition is discussed in the EIS. One of the objectives of the Beasley Pond project is to restore a healthy forest ecosystem. Prescribed fire has been successfully implemented in the project area for many years. In addition, there will be no creation of plantations in this project.

Opposing views in Mr. Artley’s Attachment 4

Road Construction Opposing View #3

“Roads may have unavoidable effects on streams, no matter how well they are located, designed or maintained. The sediment contribution to streams from roads is often much greater than that from all other land management activities combined, including log skidding and yarding.’ (Gibbons and Salo 1973). Research by Megahan and Kidd in 1972 found that roads built in areas with highly erosive soils can contribute up to 220 times as much sediment to streams as intact forests.”

http://www.watertalk.org/wawa/ecosci.html

Response: The majority of the roadwork in the Beasley Pond project will occur on established roadways. Temporary roads created during harvesting operations will be decommissioned after harvest. More information on the impacts of the proposed action on soils can be found in the EIS.

Road Construction Opposing View #11

“Forest roads apparently can serve as a partial filter to the movements of some amphibian species”

Response: The wildlife analysis in the Biological Assessment and EIS discuss the impacts of the proposed action on the flatwood salamander.

Road Construction Opposing View #13

"Few marks on the land are more lasting than roads."

"The negative effects on the landscape of constructing new roads, deferring maintenance, and decommissioning old roads are well documented. Unwanted or non-native plant species can be transported on vehicles and clothing by users of roads, ultimately displacing native species. Roads may fragment and degrade habitat for wildlife species and eliminate travel corridors of other species. Poorly designed or maintained roads promote erosion and landslides, degrading riparian and wetland habitat through sedimentation and changes in streamflow and water temperature, with associated reductions in fish habitat and productivity. Also, roads allow people to travel into previously difficult or impossible to access areas, resulting in indirect impacts such as ground and habitat disturbance, increased pressure on wildlife species, increased litter, sanitation needs and vandalism, and increased frequency of human-caused fires."

EPA entry into the Federal Register: March 3, 2000 (Volume 65, Number 43) Page 11675, "National Forest System Road Management."

http://www.epa.gov/fedrgstr/EPA-GENERAL/2000/March/Day-03/g5002.htm

Response: Excerpt from a March 3, 2002 Federal Register Notice posted by the Forest Service. The Forest Service concluded that it needed to review its forest road system policy, one of four emphasis items in the agency's National Resource Agenda. The Agency proposed to revise 36 CFR Part 212 to shift the emphasis from transportation development to managing environmentally sound access. The statement in its entirety was: “Few marks on the land are more lasting than roads. Yet, forest roads are essential for forest use and often serve as the backbone of rural transportation networks.”

Road Construction Opposing View #20

"Roads and skid trails have been identified as a major contributor to increased turbidity of water draining logging areas resulting in increases from 4 to 93 parts per million (Hoover, 1952). Forest roads have been found to have erosion rates from one to three orders of magnitude greater than similar undisturbed areas (Megahan, 1974) and perhaps account for as much as 90 percent of all forest erosion (Megahan, 1972). Forest roads can also cause soil erosion and stream sedimentation, which adversely impact on the nation’s water quality (Authur et al., 1998).

Response: The opposing view cites several very old research articles that formed the basis for the modern Best Management Practices utilized today. Some of the erosion control techniques advocated in the research publication are employed in Best Management Practices used in Florida and in the Beasley Pond Analysis Area.

Road Construction Opposing View #38

“Erosion from forest roads can be a large source of sediment in watersheds managed for timber production.”

Megahan, Walter F. Ph.D. “Predicting Road Surface Erosion from Forest Roads in Washington State”
from a presentation presented at the 2003 Geological Society of America meeting.

Response: This article discusses erosion in Washington State which has different topography than that of Florida and more specifically that of the project area. The impacts of the proposed action on sediment production are found throughout the EIS.

Road Construction Opposing View #56

“Fires do not leave a large road network in place (assuming the blaze was not suppressed otherwise there may be dozer lines, etc.). Logging creates roads that fragment habitat and generally increase human access, both of which affect the use of the land by wildlife. Moreover, roads and logging equipment can become vectors for the dispersal of weeds.”

Wuerthner, George 2008 “Ecological Differences between Logging and Wildfire”
http://wuerthner.blogspot.com/2008/12/ecological-differences-between-logging.html

Response: The cited article is an opinion piece that discusses the ecological differences between logging and wildland fire. The article presents wildland fire as a beneficial force and logging as a source of deleterious impacts on the forests. The article describes the ecosystem functions performed by fire and lists potential road-related impacts associated with logging, including habitat fragmentation, human access, disturbance, habitat avoidance (bears), hunting, poaching, and roads as vectors for invasive weeds.